
Manual

Contents

1 Setup, Dependencies and Support 3
1.1 Extensions and Interoperability 3

1.1.1 Entities / ECS . 3

2 Settings 4

3 Lexicon 5

4 Data Structures and Algorithms 6
4.1 Data Structures . 6

4.1.1 Native Priority Queue 6
4.1.2 Native Sorted List . 7
4.1.3 Native AVL Tree . 7
4.1.4 Native Red-Black Tree 7

4.2 Algorithms . 8
4.2.1 Quickselect . 8

5 Polygons 8
5.1 Location Queries . 9
5.2 Sampling . 9
5.3 Triangulation . 9

6 Spatial Acceleration Structures 10
6.1 Query Types . 10

6.1.1 Polygon Queries . 10
6.2 Quadtree and Octree . 11

6.2.1 Sparse Trees . 11
6.2.2 Dense Trees . 11

6.3 2D/3D KD Trees . 12
6.4 Bounding Volume Hierarchies 12

6.4.1 Dynamic Ball*-Tree 13
6.4.2 Dynamic R*-Tree . 14

7 Clustering 15
7.1 DBSCAN . 15

8 Mesh Operations 15
8.1 Mesh Slicing . 15
8.2 Mesh Primitives . 16

1

9 Tessellations 16
9.1 Delaunay Triangulation . 17
9.2 Voronoi Diagrams . 17

9.2.1 Voronoi Lookup Tables (VoLT) 18

10 Hulls 19
10.1 Convex Hull . 19
10.2 Concave Hull . 19
10.3 Minimum Enclosing Disc and Sphere 19
10.4 Bounding Rectangle and Box 20

11 Intersection, Overlap and Containment 20
11.1 Shape-Shape Tables . 20

11.1.1 Shape Intersections . 21
11.1.2 Shape Overlap . 21
11.1.3 Shape Containment 21

11.2 Line Intersections . 21

12 Special Queries 22
12.1 All Radius Query . 22
12.2 All Rectangle Query . 24
12.3 Range-Queries / 1D-Queries 24

13 FAQ 24

14 Contact 25

15 Future Plans 25

2

1 Setup, Dependencies and Support

In order for the package to work, the following dependencies need to be
installed either manually or via the package manager:

� Burst 1.8.0 or above (might work with lower versions; untested)

� Collections 1.3.0 or above

� Mathematics 1.2.0 or above (might work with lower versions; untested)

Additionally, depending on how you use the code, you might want to
enable /unsafe code in the Project Settings�Player. Also don’t forget
to enable burst compilation in the Editor for performance:

ò
Most features described in this manual are used in the sample
scenes. Looking at the code of them may be the fastest way of
understanding the package.

1.1 Extensions and Interoperability

The following packages, that can be found on the Asset Store, extend the
functionality of Gimme DOTS Geometry:

� Gimme GPU Geometry

Gimme DOTS Geometry is interoperable with the following packages:

� Entities 1.0 or above

1.1.1 Entities / ECS

Most algorithms and data structures can be used inside an ISystem of
Unity’s Entity Package. You can find additional example scenes on how
one might integrate DOTS Geometry within the package in:

ECS_Samples.unitypackage

In order for those additional sample scenes to work, the following items
are required:

3

https://u3d.as/3gcX
https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/index.html

� Unity 2022.3 or above

� URP 14 or above

� Entities 1.0 or above

� Enities Graphics 1.0 or above

In general, integrating the data structures into an ISystem is relatively
straightforward. For generic trees however, it might be necessary to tell
Burst to compile the jobs for specific types in advance. This is done by
registering them within an assembly:

[assembly: RegisterGenericJobType(typeof(GimmeDOTSGeometry

.NativeSparseQuadtree<int>.GetCellsInRadiusJob))]

[assembly: RegisterGenericJobType(typeof(GimmeDOTSGeometry

.Native2DRStarTree<MyCustomComponent>.GetRectanglesInPolygonJob))]

All jobs are public members of the data structures (for exactly this rea-
son). You can find more information on why this is necessary here: Generic
Jobs (the newer documentations do not include this page).

2 Settings

Safety Checks The number of safety checks that will be made depends
on this settings, with strict being the highest safety setting. The idea is to
keep the mode to strict in production and turn it to normal for a release
build.

Degeneracy Handling Should be kept to safe. Only change to unsafe
if you have a solid understanding of the algorithms in use and you can
guarantee that your data is free of degenerate cases. If so, the performance
might be further improved by removing the handling of them.

ò
A degenerate case in geometry is a special case of a shape or
its position (e.g. a triangle where all three points lie on a line, a
circle with radius 0, etc.)

4

https://docs.unity3d.com/Packages/com.unity.entities@0.51/manual/ecs_generic_jobs.html
https://docs.unity3d.com/Packages/com.unity.entities@0.51/manual/ecs_generic_jobs.html

3 Lexicon

Quick Reference for some of the words used in this document in case you
are unfamiliar with them. I will try to maintain and expand this list.

Collinear Three or more points are collinear if they lie on a single straight
line.

Concave A boundary is concave if it is not convex

Convex A boundary (for example a polygon) is convex if from every point
inside it, all other points making up the boundary are visible (you can
connect them with a straight line without ever intersecting the boundary)

Degenerate Case A special case of the geometric structures encountered
during the execution of an algorithm that usually occurs in some form of
limit. Examples are triangles where the points are collinear, a zero-length
line segment, a circle with an infinite radius, etc.

Dynamic Data Structures in computational geometry that act on a chang-
ing set of data are dynamic data structures. In video game development
both types of problems (dynamic and non-dynamic / static) occur, which is
the reason why different data structures are often necessary.

Euclidean Distance It is the most common or ”regular” way of measur-
ing the distance between two points in space. For 2D, in mathematics, it
looks like so:

√
(ax − bx)2 + (ay − by)2. In Unity Code it looks like this:

Vector2.Distance(a, b). However, there are other metrics (like for exam-
ple the distances on a grid)

Manhatten Distance Also called taxicab distance or city block distance.
As the names suggest, it is a measurement of distances in a ”grid”, a space
where you can travel only along the cardinal axes and not along any diagonal.
In 2D, in mathematics, it looks like so: |ax− bx|+ |ay− by|. In Unity code it
would be expressed like this: Mathf.Abs(a.x - b.x) + Mathf.Abs(a.y -
b.y).

Nearest Neighbor Search Abbreviated NN Search or NNS. It is a type
of query that, given an input position, will return the nearest / closest point
or shape that is inside of a spatial data structure. A variant called kNN
Search returns the k closest points to a given position.

5

Sweep line algorithm A category of algorithms where a line is ”swept”
through a geometric data set. It can be done in numerous ways (but usually
from a ”highest” point to a ”lowest” point) and can speed up the calculation
if used in conjunction with the right data structures.

4 Data Structures and Algorithms

When using the Jobs in this package, you will sometimes encounter an
out-parameter of type JobAllocations. This is always the case when the
method called is allocating some additional memory. They are then stored
into this class, which has to be disposed at an appropriate point in time
(e.g. when the Allocator is TempJob within 4 Frames etc.).

4.1 Data Structures

For some of the more advanced algorithms, some data structures which are
generally useful had to be implemented as to be used with the Job System.
The more interesting ones are:

� Native Priority Queue

� Native Sorted List

� Native AVL Tree

� and a Native Red-Black Tree

All data structures require a Comparer for determining the way the
values have to be sorted (e.g. ascending, descending etc.).

If you do not want to write your own Comparer, you can use default
Comparers! For example:

NativePriorityQueue<int, DefaultComparer<int>>(default, Allocator.TempJob);

NativeSortedList<float, DefaultComparer<float>>(default, Allocator.TempJob);

In addition to these structures, there are of course various classes, meth-
ods and extensions for different shapes, such as lines, triangles, tetrahedra,
etc.

4.1.1 Native Priority Queue

A standard implementation of a Priority Queue with a Binary Heap as
underlying data structure (as it is the most cache-friendly, for it can be put
into a single array). It has the interface of a regular queue, i.e. methods like
Enqueue(), Dequeue etc.

However, dequeuing always returns the largest element (depending on
your definition of large in your comparer)! In other words, if a regular queue

6

is ”first in, first out”, a priority queue is ”first in, largest out”. This is useful
in many cases where you are only interested in the single-most extreme value
of a data set (i.e. you want to find the enemy with the greatest health etc.)

4.1.2 Native Sorted List

Figure 1: Editor
GUI

A regular list, that keeps itself sorted with random access
(like accessing elements of an array). The underlying
data structure is a probabilistic skip list. This is in some
way similar to a balanced Binary Search Tree, except
without the tree and the recursiveness, but with more
pointers.

Both Insert() andRemove() require onlyO(log(n))
steps (in the limit). Accessing an element of the list
is also an O(log(n)) operation. Searching for an ele-
ment with a specific value in the list (Search() or Con-
tains()) is also an O(log(n)) operation. In other words:
Everything is O(log(n)), which makes it an incredibly
fast and versatile data structure for complex tasks.

This structure is useful if a list has to be kept sorted
and elements are added and / or removed on a regular
basis. As an example, you might want to sort all items
based on their value (for an inventory). If items get
removed or added quickly, a sorted list will be faster

(and makes the code more maintainable as well).

ò
Iterating through ALL elements can be done in O(n) using an
Enumerator! Therefore try using the foreach-pattern instead
of a for-loop. Its faster in this specific case

4.1.3 Native AVL Tree

A balanced binary search tree. In principle it has the same qualities as the
sorted list / skip list (it has the same interface as well). However, an AVL
Tree is more complicated computationally (and conceptionally as well). This
gives it an higher performance overhead.

Therefore, in 95% of all cases the sorted list should be preferred. How-
ever, in some cases a tree can be more flexible (for example when it makes
sense to apply special meaning to internal nodes). In addition, the memory
footprint of AVL Trees is lower.

4.1.4 Native Red-Black Tree

Another balanced binary search tree. It has some advantages in certain
situations in terms of performance, when it comes to deletions and insertions.

7

4.2 Algorithms

4.2.1 Quickselect

Quickselect is an algorithm most commonly used to find the median of an
unsorted list very quickly. A burst-compatible version is included in the
class NativeSelection.cs. In addition to finding the median, it can also
be used to find the k-th smallest or largest element of a list in O(n) average
time complexity.

It is used for a fast construction of KD-Trees!

5 Polygons

An implementation of 2D non-simple Polygons can be found in Native-
Polygon2D. They can be convex or concave, contain holes or not. However,
self-intersections are not allowed.

As it is more important for performance reasons and otherwise, holes are
separated in the vertices list by a second separator list, containing their start
indices. Each, the polygon and the holes, should be in counter-clockwise
order!

Figure 2: Polygon Handle

For adding a hole to a poly-
gon, simply create the boundary
first, and then call AddHole().
Holes are not allowed to over-
lap and they are also not allowed
to lie outside the polygon (as it
would not make sense).

When Area() is called, the
holes are considered and their
area subtracted from the outer
boundary area (as you would ex-
pect).

By making bridges from
holes to the border, each polygon can be made ”simple”, i.e. containing
no holes if you want (MakeSimple()). There are also methods for testing
if a polygon is simple or convex.

For editing polygons, you can create and use aNativePolygon2DHandle
and call OnSceneGUI from an Editor. The handle allows for adding and
removing vertices and holes as desired (however the triangulation will fail
when it is self-intersecting). You can also call OnInspectorGUI from the
same handle to display all the options (show labels, show center handles,
etc.).

Polygons are not serializable by default as the structs are using unsafe
lists. When the NativePolygon2DHandle changes the polygon there-

8

fore, you’ll have to read the modified polygon back with GetModified-
Polygon(). The handle marks the owner object as dirty when changes are
present.

Polygons have methods for saving and loading them as binary files. Oth-
erwise, you can always save the unsafe lists to regular arrays in private seri-
alized fields of a MonoBehaviour. It should be relatively painless to combine
these two saving methods with Addressables or a Resource Folder.

5.1 Location Queries

Underlying the location queries is a modified Winding Number Algorithm
(using double the actual winding to be able to use integers instead of floats).
You can also watch my tutorial about them here: Youtube: Winding Num-
ber Algorithm.

Other than that, it is only slightly adjusted for holes and put into two
Jobs (single or parallel). Because of its simplicity, it is extremely fast. The
necessary methods are in Polygon2DPointLocation.

5.2 Sampling

You can also create points that are distributed within the polygon. This is
useful if you want to spawn objects only inside the boundary.

At the moment only points that are either evenly or distance-field dis-
tributed are supported (with Jobs). However, it should not be too difficult
to implement your own sampling distributions if necessary.

In practice, you create an instance of the classNativePolygon2DSampler
(which needs a NativePolygon2D for the constructor) and then call either
SamplePoint (without Jobs) or SamplePoints (with Jobs).

5.3 Triangulation

Two different methods for triangulating NativePolygon2D are provided
in this package (Polygon2DTriangulation):

� Ear-Clipping Triangulation

� Y-Monotone Triangulation

Ear-Clipping is an O(n2) algorithm, but is faster for smaller polygons as
it is less complex. Additionally, it is very stable even for small values. How-
ever, it cannot handle holes, and therefore each polygon using this method
has to be made simple first (NativePolygon2D.MakeSimple()).

On the other hand, Y-Monotone or Monotone Triangulation is anO(n log n)
algorithm and scales very well for complex polygons and can deal with holes
by default. However, as it uses a sweep line, it is prone to make errors when
having small input values or positions that are too close to each other (on

9

https://en.wikipedia.org/wiki/Point_in_polygon
https://youtu.be/E51LrZQuuPE
https://youtu.be/E51LrZQuuPE

the local Y-Axis... which might be different global axis, depending on how
you position your polygon).

Each triangulation job can return back the triangles in clockwise wind-
ing or counter-clockwise winding. Use clockwise for mesh-generation (as
it is the default winding order of Unity)

6 Spatial Acceleration Structures

6.1 Query Types

Each spatial acceleration structure (SAS) supports some basic query types.
This includes each quadtree variant, each octree variant, KD-Trees and Ball*
Trees (2D + 3D).

For the 2D Case, these queries are:

� Circle-Query (with position and radius)

� Rectangle-Query (with Unity’s Rect-Struct)

And for the 3D Case, they are:

� Sphere-Query (with position and radius)

� Cuboid-Query (with Unity’s Bounds-Struct)

As you can see, each query takes a shape as input. However, you may
also create parallel queries with multiple shapes of the same form. The work
is then distributed with the Job System (ParallelFor-Job).

E.g. a native 3D KD-Tree has a method called GetPointsInRadii,
taking NativeArrays as input, that contain the centers and radii. It will
return a JobHandle that you can then Complete() at any moment of your
choice. Each SAS supports parallel queries.

Note, that because overlapping shapes results in multiple CPU cores
trying to write the same data to a hash set, the performance can degrade.
In other words: Avoid overlapping shapes as best as you can.

6.1.1 Polygon Queries

The 2D KD-Tree, the 2D Ball* Tree and the 2D R* Tree support polygon
queries. As the polygons, as always, support holes, this basically allows you
to query any shape in 2D.

The methods in both trees require a NativePolygon2D as well as a
transform in the form of a Matrix4x4. The points of the polygon are
transformed internally before the query (as expected).

Internally, the bounding rectangle of the polygon is first used to find the
approximate region. Afterwards, the points are checked against the polygon
using a fast version of the Winding Number Algorithm.

10

6.2 Quadtree and Octree

Figure 3: Quadtree Handle

There are two variants of Quadtrees and
Octrees, sparse and dense. All trees
implement either IQuadtree or IOctree
and are spatial-hashed. The hash func-
tion is the Z-Order Curve / Morton Code
in its respective dimension (Quadtree = 2,
Octree = 3). Each individual hash then
represents a cell or a bucket of the tree.
In addition to that, only the paths to the
hashes are stored (the trees are not com-
plete).

The classes are called NativeSparse-
Quadtree,NativeDenseQuadtree,Na-

tiveSparseOctree and NativeDenseOctree.
Each tree has its own handle class (NativeQuadtreeHandle or Na-

tiveOctreeHandle) which similar to the NativePolygon2DHandle can
be integrated into custom editors (don’t forget to call OnSceneGUI of the
Handle).

There are two types of queries (that were put into Jobs) implemented
for each variant. You can either search the trees in a 2D Circle/ 3D Sphere
around a world position or a 2D Rectangle / 3D Box. The query job then
returns a list of hashes (Morton Codes) which you can then process how
you like (i.e. you can either use it for vector calculations or getting the
corresponding data buckets out of the tree).

There are also methods to update or remove values again from the tree.

6.2.1 Sparse Trees

Sparse trees have faster query times compared to their dense counterparts
and, depending on your data, occupy far less memory. However, they are
less dynamic, meaning that inserting, updating and removing objects from
the trees will take longer.

6.2.2 Dense Trees

Dense trees have faster insert-, update- and removal times. However, the
query times are slower (though not asymptotically) and they take a lot more

memory. A dense quadtree has to allocate

log2x∑
i=0

x2

4i
=

4x2 − 1

3
nodes in ad-

vance on creation, while a dense octree has to allocate

log2x∑
i=0

x3

8i
=

8x3 − 1

7

11

https://en.wikipedia.org/wiki/Z-order_curve

nodes, where x is the number of cells along an axis. In other words, the
memory grows quadratically and cubically respectively (as you would ex-
pect).

The first limitation therefore comes in form of the NativeArrays not
being able to allocate more than 2GB (overflow) at a time. Which in the
case of an octree is already reached with a 256x256x256 tree.

6.3 2D/3D KD Trees

A 2D/3D KD-Tree implemented in DOTS (Native2DKDTree or Na-
tive3DKDTree). It allows you to make very fast range queries for a
static dataset (without moving points). Both, rectangle / bounds and ra-
dius search, which work similar to the quadtree/octree jobs, take about
O(

√
n+ k) time for the 2D case and O(n2/3+ k) for the 3D case, where k is

the number of reported points (the size of the search result). This means,
that there is a large overhead for small point sets, that gets smaller and
smaller with size.

KD-Trees, in addition to radius and rectangle queries, can search for
the nearest neighbor to a given position (or multiple nearest neighbors to
multiple given positions). The method, that schedules the job for it, is called
GetNearestNeighbors().

The 2D KD-Tree can be created in each plane of 3D Space i.e. you can
sort the points along the XY-, XZ- or YZ-axis. You do this by providing
the correct sorting mode to the constructor.

There is also, of course, a Native2DKDTreeHandle and a
Native3DKDTreeHandle, which you can use in a custom editor in any
way you see fit. Don’t forget to call OnSceneGUI!

KD-Trees are generic and can be used with custom data structures.
It is required that the struct implements the interface IPosition3D and
IEquatable. Two implementations are provided - Position3D and Posi-
tionWithIndex3D which are also used in the example scenes.

6.4 Bounding Volume Hierarchies

Bounding Volume Hierarchies (BVH) are commonly found in physics en-
gines, ray tracing structures or machine learning. As the name implies, they
save a bounding area or volume instead of point data, which enables one to
do Raycasts or Frustum Queries!

ò
Depending on your game, this will give you an additional perfor-
mance boost, because it may enable you to remove some of your
colliders!

In addition to that, they are also adjusting to the underlying distribution.

12

This means that querying less densely populated areas is cheaper. On the
flip side, this also means, that it is somewhat slower for a while when the
distribution changes quickly.

Figure 4: Dynamic 2D Ball*
Tree

The literature on BVH is often about
making optimal trees. However, rebuilding
the structure can be very costly, especially
when you have a lot of moving objects in
your game. For this reason, the BVH in this
package were made to optimize themselves
with a heuristic over time, rather than be-
ing optimal (hence the dynamic and the
”*”).

This heuristic is its own method / job
(Optimize()), as it can be paused without
any problems if you need some additional
performance for a while. However, this de-
grades the query performance over time and

is not recommended.
Non-optimality trades in query performance for update cost. That said,

the queries are still lightning fast, and most of the time faster than the
simpler Quadtrees and Octrees.

BVH in this package do not have editor handles, as they are rather
chaotic when drawn (You can see their behaviour in the test scenes)

6.4.1 Dynamic Ball*-Tree

Encapsulates bounding circles or spheres into a hierarchy. Which means
that the objects or data inserted into the tree has two requirements:

� They implement IBoundingCircle or IBoundingSphere

� They implement IIdentifiable (to avoid expensive equality tests)

Queries do return those circles or spheres again, which is why they are
named slightly differently:

� GetCirlcesInRadius() / GetCirclesInRectangle()

� GetCirclesInPolygon()

� GetSpheresInRadius() / GetSpheresInBounds()

� etc.

Parallel queries are available, so are queries that allow you to get the
overlapping circles or spheres as well.

13

For detecting the closest circle or sphere to one or multiple positions,
call GetNearestNeighbors().

In addition to that, there is a method called Raycast, which takes either
a Ray2D- or Ray-struct as parameter (same as Unity) and returns all
circles or spheres on the line segment defined by them. The y are returned in
a sorted list within a IntersectionHit2D- or IntersectionHit3D-struct.
These structs also include a list of the intersection points (at most two).

3D Ball*-Trees (and R* Tress as well) are capable of efficiently culling
spheres from a given camera frustum. You can find a FrustumQuery()-
method in the class which will return only the visible spheres in the provided
camera.
Updating a Ball*-Tree is a two-step process:

� Update the circle positions and radii, either each one individually (with
Update) or with the UpdateAll-Job

� Optimize the structure by scheduling a job with Optimize()

6.4.2 Dynamic R*-Tree

Encapsulates bounding rectangles or axis-aligned boxes into a hierarchy.
Which means that the objects or data inserted into the tree has two re-
quirements:

� They implement IBoundingRect or IBoundingBox

� They implement IIdentifiable (to avoid expensive equality tests)

Queries do return those rectangles or boxes again, which is why they are
named slightly differently:

� GetRectanglesInRadius() / GetRectanglesInRectangle()

� GetRectanglesInPolygon()

� GetBoundsInRadius() / GetBoundsInBounds()

� etc.

Parallel queries are available, so are queries that allow you to get the
overlapping rectangles or boxes as well.

For detecting the closest rectangle or box to one or multiple positions,
call GetNearestNeighbors().

R*-Trees are of course also capable of Raycasts, in the same way the
Ball*-Trees are and they can also do Frustum Queries as well. It should
be noted, that the frustum query returns all bounds within the view frustum
or slightly more - this is so that the exact calculation of the box-frustum

14

intersection can be skipped, saving time. The number of false positives (that
are falsly identified as within the view frustum) is small.

Updating is done in a similar fashion to the Ball*-Tree as well (first
Update() then Optimize()).

7 Clustering

Clustering assigns label to groups of objects based on some similarity of
properties. In computational geometry this is usually related to distance
i.e. the density of points in different regions of space.

7.1 DBSCAN

DBSCAN labels points based on the point density. The algorithm has two
parameters: minPts and ϵ. The second parameter defines the search radius
within which points are considered to be in the same label, while the first
parameter defines how many points need to have to be within that radius
to be a core point from which the cluster will grow.

You can find a more thorough description on Wikipedia: DBSCAN.

At the moment, only the 2D DBSCAN is implemented and you can find
it in the class DBSCAN (and for how to use it, please refer to the example
scene provided in the package). Under the hood, an All Radius Query is
used to determine the neighbours for each point within range ϵ.

8 Mesh Operations

8.1 Mesh Slicing

Figure 5: Sliced Cylinder

Slicing enables you to cut a mesh into
pieces. The static class that implements
the necessary Jobs and Methods is called
MeshSlicing. To make a cut you will need
a Mesh and define a Plane (Unity Struct).

The mesh has the additional require-
ment, that it is not allowed to be self-
intersecting at the place of the cut (it is
allowed to self-intersect in the ”unaffected”
parts though).

If the plane misses the mesh entirely
(cutting at the wrong position), the Slice-
Method of the class will return null. Oth-

erwise, it will return two meshes representing the elements to each side of

15

https://en.wikipedia.org/wiki/DBSCAN

the cutting plane. Each of them will have a number of submeshes corre-
sponding to each unconnected surface lying on the plane (i.e. each submesh
is a polygon).

The first submesh is reserved for the ”shell” i.e. the parts of the original
mesh that remained. Normalized UV coordinates are automatically gener-
ated for each other submesh (the polygons), allowing you to assign different
materials to each surface at your leisure.

The algorithm internally is a custom design, using other algorithms from
the package. It works by finding connected edge loops around the plane,
which then form polygons, which are then triangulated and converted into
meshes.

8.2 Mesh Primitives

The class MeshUtil has numerous methods for creating the primitives and
shapes you can find in the table below. If the a cell in the column Outline
is marked with ”Yes”, then there is also an additional method for creating
the outline of the shape.

Mesh Primitives

2D Outline 3D Outline

2D Grid - 3D Grid -

Arrow - Arrow -

Circle Yes Box Yes

Line - Cone -

Polygon Yes Cylinder -

Triangle Yes Line -

Rectangle Yes Prism -

Tetrahedron Yes

Torus -

Triangle Yes

UV Sphere -

UV Capsule -

9 Tessellations

Tessellations are divisions of surfaces into smaller parts such that the space
is filled and there are no holes or gaps. Stretching the meaning, I use this
terminology in this document to refer to Delaunay-Triangulation, Voronoi-
Diagrams with different metrics etc. collectively (The Delaunay Triangula-
tion is a tessellation of the convex hull of an arbitrary set of point. So in
this way it checks out).

16

9.1 Delaunay Triangulation

Figure 6: Delaunay

Given an arbitrary set of 2D points, the De-
launay Triangulation will form triangles in
the convex hull of these points such that
the minimum angle of each triangle is max-
imized. The package contains a random-
ized incremental implementation of this al-
gorithm that runs in O(n log n).

This type of triangulation can be used
for various purposes as for example ter-
rain data, point clouds, 2D NavMeshes etc.
The dual is the Voronoi Diagram (next
section). To calculate it, call the Cal-
culateDelaunay()-method from the De-
launay2D-class. Because of floating-point

precision, issues will arise under these two circumstances:

� Two points are very close together (and therefore forming a very small-
angled triangle)

� Three points lying on the convex hull are almost collinear (and there-
fore forming a very small-angled triangle)

Otherwise, the algorithm will run stable, even with single-precision arith-
metic.

9.2 Voronoi Diagrams

Figure 7: Voronoi

A Voronoi Diagram is a tessellation of the
plane using sites (a site just being a posi-
tion on the plane or in space). Each region
or cell of the resulting diagram is associated
with one and only one of these sites. And
each of them has the property that each
point inside the cell is closer to the asso-
ciated site than to any other site (by some
form of distance metric. In game develop-
ment this is almost always the euclidean dis-
tance).

However, that does not explain too
much. Here is the reverse programmer-
friendly version: Given an array of polygons
(e.g. NativePolygon2D), an array of sites (e.g. float2 or Vector2) and a
dictionary that uniquely maps each polygon to one of the sites that make up

17

a Voronoi Diagram; if an arbitrary query position is inside one of these poly-
gons, then the closest site / point is the one that the polygon is associated
with in the dictionary.

These queries can be precomputed as a lookup table (or texture) for
non-moving objects (next section: Voronoi Lookup Table) to speed up
problems like ”Find the closest quest NPC (site) to the current player posi-
tion (query position) out of a 100 NPCs (sites)” tremendously (it is a lookup,
so it is just O(1)!) at the cost of memory.

Another use case, that may also be implemented in the future in this
package, would be 2D mesh fracturing. They can also be used to define
map and control regions in certain games. Or for decoration (procedural
mosaics for example).

Calculating a Voronoi Diagram is simply done by calling the Calcu-
lateVoronoi()-method in the Voronoi2D-class. As the algorithm uses the
dual of the Delaunay-Triangulation, it has the same O(n log n) complexity.

9.2.1 Voronoi Lookup Tables (VoLT)

Although the table and a voronoi texture are the same in principle, their use
cases are different. For this reason, and because Voronoi Lookup Table
is long to write, I use the acronym VoLT (also in the code).

A VoLT can be used to speed up nearest-neighbour queries of non-
moving objects to O(1) at the cost of memory and precision. It achieves
this by pre-computing and then storing the answer to the nearest-neighbour
query for each point in a grid.

ò
For the curious: Such tables might not only be created for 2D, but
also 3D and for other metrics as well. Even shapes are possible!

You can calculate a VoLT by calling CalculateVoronoiLookupT-
able() from the Voronoi2D-class. The returned array is stored in one
dimension but contains all the two-dimensional data. Each element of it
points to the closest site.

To find the closest site with a VoLT, we simply have to convert regu-
lar coordinates to a table index by calling CalculateVoronoiLookupT-
ableIndex() which is also found in the same Voronoi2D-class.

Depending on the performance-requirement of the calculation of this
table (and also its size), it can also be computed via the GPU (e.g. with a
compute shader). However, this would be outside the scope of this package.

You can however find a tutorial on my channel here where I show how
to do this calculation (with compute shaders): Youtube: How Voronoi Dia-
grams Can Speed Up Your Game

18

https://youtu.be/0C4XzhKmAdg
https://youtu.be/0C4XzhKmAdg

10 Hulls

Finding a hull is the process of enclosing a set of points with a pre-determined
shape. Currently, all algorithms are contained in the HullAlgorithms-
Class.

10.1 Convex Hull

You can create a convex hull (consisting of a polygon) of an arbitrary set
of 2D points by using one of the methods in the HullAlgorithms-Class.
The output of one call to CreateConvexHull() is always a NativePoly-
gon2D. If you have a lot of points (say more than a thousand) you might
want to consider filtering the points (an option in the method parameters).
Doing this applies the Akl-Toussaint-Heuristic to the set of points first,
which will significantly speed up the calculation (but might be slower when
having few points).

Additionally, you can also retrieve the indices by calling FindConvex-
HullIndices(), without creating a polygon instead.

10.2 Concave Hull

A concave hull cannot be calculated directly from an arbitrary point set
(since there are endless possibilities on how the hull might look and be
formed). However, we can make an approximation that suits many practical
cases.

The technique implemented in the package is described in this Paper by
Jin-Seo Park and Se-Jong Oh. To use it, simply call CreateConcave-
Hull() in the HullAlgorithms class. The output is a NativePolygon2D
with the vertices representing the concave hull.

10.3 Minimum Enclosing Disc and Sphere

You can find the minimum disc or minumum sphere around a set of points
(2D or 3D) by calling FindMinimumEnclosingDisc or FindMinimu-
mEnclosingSphere.

The method used internally is an adaptation of Welzl. As such, it is
an incremental randomized algorithm, which means that the performance
varies depending on the order of your points. But in principle, it does scale
with O(n) (where n is the number of points)

The area of enclosing discs and spheres is larger than that of convex
hulls, however they are easier to work with. In addition to that, you might
want to use these algorithms to calculate the minimum bounding sphere of
procedurally generated meshes.

19

https://global.discourse-cdn.com/mcneel/uploads/default/original/3X/e/2/e2a9d19b49688b859eb2057ab6e1e8a7f29962fa.pdf
https://global.discourse-cdn.com/mcneel/uploads/default/original/3X/e/2/e2a9d19b49688b859eb2057ab6e1e8a7f29962fa.pdf
https://www.stsci.edu/~RAB/Backup Oct 22 2011/f_3_CalculationForWFIRSTML/Bob1.pdf

10.4 Bounding Rectangle and Box

For completion’s sake, there are also Jobs provided for calculating the min-
imum enclosing rectangle and box, also known as bounding rectangle and
box. The methods are called CalculateBoundingRect and Calculate-
BoundingBox respectively.

11 Intersection, Overlap and Containment

11.1 Shape-Shape Tables

Although not the primary focus of this package, many intersection-, overlap-
and containment-procedures have been written for various algorithms. The
tables should act as quick reference.

Legend - Table Symbols:

X ... Implemented
D ... Dimension of a Shape has to be changed (e.g. 2D-Line to 3D-Line)
U ... Already implemented by Unity
- ... Does not have meaning

Shape Abbreviations:
LS2 ... Line Segment 2D
LS3 ... Line Segment 3D
L2 ... Line 2D
L3 ... Line 3D
P ... Plane
R ... Rectangle
B2 ... 2D Ball / Circle
B3 ... 3D Ball / Sphere
Poly... Polygon (2D)

20

11.1.1 Shape Intersections

Intersections between Shapes

Shape LS2 LS3 L2 L3 P R Bound B2 B3

LS2 X D X D X D X D

LS3 D X X X D X

L2 X X D D X

L3 D X X

P D X D X X X

R X X

Bound D X X U

B2 X D

B3 D X

11.1.2 Shape Overlap

Overlap between Shapes

Shape LS2 LS3 R Bound B2 B3

LS2 – – X D X D

LS3 – – – X D X

R X – U X

Bound D X – X – X

B2 X D X X

B3 D X – X – X

11.1.3 Shape Containment

Containment between Shapes

Shape Point LS2 LS3 R Bound B2 B3 Poly

Point – – – U U X X X

LS2 – – –

LS3 – – – –

R – – – X X D

Bound – – – – X – X

B2 – – – X X

B3 – – – – X – X

Poly – – –

11.2 Line Intersections

Detecting all intersections between a set of n lines (or line segments) scales
n2 in the worst-case (each segment crosses each other segment). Therefore
the optimal algorithm also is at best O(n2).

21

Figure 8: Octree Handle

Therefore, a simple detection algo-
rithm just checks all combinations and
returns the intersections it found. This
is used when calling FindLineSeg-
mentIntersectionsCombinatorial in
LineIntersection.

However, in most cases, the number
of intersections i is far lower than n2

and one can create an algorithm that
is output-dependent using a sweep line.
The runtime is something of the likes
of O(n log n+ i log n). That means, the
algorithm can perform better or worse
than checking all combinations, depend-
ing on the shape of the input.

Moreover, as it is using a sweep line, it can be unstable because of
floating-point precision. To remedy the worst problems, the Job can restore
its status to allow it to continue after it detects an ”error” (when an element
can’t be found in a tree). Restarting adds some additional performance
penalty (if there are floating-point problems).

I’d recommend to use the combinatorial version for line intersections (it
is very fast, as it is very simple), except if you have thousands of lines that
are relatively spaced out. There is a sample scene included that shows a
situation where the sweep line is faster.

If you’re wondering why the sweep line algorithm is even included � it
is the precursor for computing map overlays.

12 Special Queries

12.1 All Radius Query

The All Radius Query is well suited for finding all points within a fixed
radius r for each point in a set of points. You can find it in the class
SpecialQuery. A parallel version of the algorithm exists as well.

Why choose it over querying a SAS n-times with radius r? Because,
for this particular type of query, there are some improvements that can be
made in terms of performance.

To my knowledge, there is no available description of this algorithm yet
(but I might have simply not found it because I do not know the name), so
I’ll explain the concept a little bit more in detail, so it can be understood by
the curious (it is very, very simple compared to other sweep line algorithms).

First, notice that if the radius is fixed, then as soon as point a is within
the radius of point b, then so is point b within the radius of point a, as both

22

radii are equal. This halfs the number of comparisons we need to do.
Also, very loosely speaking, in a SAS when doing a query, first the

”general region” is determined and then only when we get closer to the
leaves of the (usually) trees we get some actual results. This is more than
fine for a single query. However, using a sweep line algorithm, as we now
traverse the set of points in an ordered fashion, we can update the ”general
region” accordingly depending on where we are right now. Which removes
additional comparisons.

And so these are precisely the things that make this algorithm. It is a
sweep line checking all semi-circles from bottom to top. Each point has two
events. The first event is located at the position of the point itself (start
event), and the second one is where the semi-circle extending upwards ends
(end event). A NativeSortedList keeps track of all the semi-circles we
have to consider right now. Points are added to the status, when there is a
start event and removed when there is an end event. This now gives us
a section of thickness r along the Y-Axis (the ”general region”).

Stating the obvious, notice that two points are within their radii if the
distance between their points is smaller than the radius r. But now only
looking at the X-Coordinate of the points, we can also see that the distance
has to be smaller than the radius r as well. This is why the NativeSort-
edList sorts the points with their X-Coordinate. If we now want to compare
a point p with our current region, we first find all points in the status that
are, with their X-Coordinates, in the interval [px − r, px + r]. This is done
using a Range Query, returning a subset of the status.

What remains now are points within a rectangle around p. And for these
points only we check the distance. When it is detected that two points a
and b have a distance less than r, then b is added to the list of a and vice
versa.

As for the time complexity (not rigorous): First, the points need to be
sorted along their Y-Coordinates (and on their X-Coordinates when there
are ties), an O(n log n) operation. For the main part of the algorithm we
have to go through a list of size 2n. Lets denote the number of points within
a section of height r as k. Then for n points of the list we do a range search
which is a log k operation. Lets denote the number of points within the
rectangle defined by a point p as previously as l. After the range search we
iterate through a (sorted) list of size l doing l comparisons. The total number
of comparisons of the main part is approximately n(log k+l) or n log k+nl.
The runtime complexity in total is approximately O(n log n + n log k + nl)
(note that both k and l can be as big as n giving us a quadratic runtime. I
omitted the n log l factor for adding and removing from the sorted list as it
cannot be more dominant than nl).

23

12.2 All Rectangle Query

The All Rectangle Query can be used to find all points within a fixed
rectangle r for each point in a set of points. You can find it in the class
SpecialQuery. A parallel version of the algorithm exists as well.

It works very similar to the All Radius Query from the interface / API
point-of-view as well as the internal workings. The only difference is that
the radius check is removed, making it slightly faster than the All Radius
Query. That said, it depends on the dimensions of the rectangle r.

12.3 Range-Queries / 1D-Queries

Range Queries are queries like ”find all enemies with a health between 38
and 55”, ”return all NPCs whose quest is between 1 and 3 days old” etc.
They are frequently used in databases, but they also have their use for
solving geometric problems when trying to answer a question like ”which
map locations are between the x-coordinates 400 and 550” for example.

There is no special SAS for 1D-Queries. Instead, the NativeSortedList
has a method called SearchRange() with a minimum and maximum pa-
rameter, returning a JobHandle to be completed.

13 FAQ

1. — I have static objects / static positions (like vertices for example)
and want to query them from a known position. Which data structure
should I use?

KD-Trees. They are very, very fast.

2. — I have few or rarely moving objects and want to query them from
a known position. Which data structure should I use?

Native2DBallStarTree or Native3DBallStarTree. They are fast
and adapt themselves. Otherwise, use NativeSparseQuadtree or Na-
tiveSparseOctree as they are faster than the dense version and take a
lot less space!

3. — I have a lot of moving objects and want to query them from a
known position. Which data structure should I use?

24

Native2DBallStarTree or Native3DBallStarTree. Definitely!

If you have a reason to use Quadtrees or Octrees (because of world chunks
for example), then it depends on how many moving objects exactly. If
you have roughly around 3000 moving objects or more, use the Na-
tiveDenseQuadtree or the NativeDenseOctree. Otherwise, still use
NativeSparseQuadtree or NativeSparseOctree.

If you are unsure about which variant to use, you can test them both
with various parameters in the QuadtreeMovementTest-Scene and
the OctreeMovementTest-Scene.

4. — I have a lot of objects n and want to query from each object all
objects within a radius or rectangle r

All Radius Query or the All Rectangle Query are your best choices
(better than querying a SAS over and over)

14 Contact

For any questions or suggestions, you can reach me anytime by the following
email-adress:

blenderfan@gmx.at

There is also a discord server, which is usually the fastest way to reach
me:

Parable Games - Discord

Alternatively, you can also find some social media links and contact in-
formation on my website:

https://parable-games.com

15 Future Plans

Some additional features I plan to implement in the near future:

� Map Overlay Algorithm

25

mailto:blenderfan@gmx.at
http://discord.gg/wGKEapzPPK
www.parable-games.com

� Straight Skeleton of Polygons (for generating roofs)

� AABB Tree

� Marching Squares / Cubes

� Quickhull Disk (for fun)

26

Thank You!

Your purchase of Gimme DOTS Geometry enables me to continue de-
veloping code and techniques for game-development in an independent way!

27

	Setup, Dependencies and Support
	Extensions and Interoperability
	Entities / ECS

	Settings
	Lexicon
	Data Structures and Algorithms
	Data Structures
	Native Priority Queue
	Native Sorted List
	Native AVL Tree
	Native Red-Black Tree

	Algorithms
	Quickselect

	Polygons
	Location Queries
	Sampling
	Triangulation

	Spatial Acceleration Structures
	Query Types
	Polygon Queries

	Quadtree and Octree
	Sparse Trees
	Dense Trees

	2D/3D KD Trees
	Bounding Volume Hierarchies
	Dynamic Ball*-Tree
	Dynamic R*-Tree

	Clustering
	DBSCAN

	Mesh Operations
	Mesh Slicing
	Mesh Primitives

	Tessellations
	Delaunay Triangulation
	Voronoi Diagrams
	Voronoi Lookup Tables (VoLT)

	Hulls
	Convex Hull
	Concave Hull
	Minimum Enclosing Disc and Sphere
	Bounding Rectangle and Box

	Intersection, Overlap and Containment
	Shape-Shape Tables
	Shape Intersections
	Shape Overlap
	Shape Containment

	Line Intersections

	Special Queries
	All Radius Query
	All Rectangle Query
	Range-Queries / 1D-Queries

	FAQ
	Contact
	Future Plans

