
Manual

Contents

1 Dependencies and Setup 2

2 Introduction 2

3 About Compute Shaders and the GPU 3
3.1 Graphics Fence . 4
3.2 Buffers . 4

3.2.1 Structured Buffers . 5
3.2.2 Append Buffers . 5

3.3 Measuring Performance . 5
3.4 Debugging . 6

4 Classes and Data Structures 7
4.1 GPU Job Manager . 7
4.2 GPU Jobs . 7
4.3 Mirror Structures . 8

4.3.1 GPU Polygons . 8

5 Spatial Acceleration Structures 9
5.1 Bins . 9

5.1.1 2D Grids / Bins . 10
5.1.2 3D Grids / Bins . 10

5.2 KD-Trees . 11

6 Tesselations 12
6.1 Voronoi Diagrams . 12

6.1.1 Voronoi Lookup Tables 12
6.1.2 Voronoi Textures . 13
6.1.3 Voronoi SDFs . 13

7 Special Queries 13
7.1 Brute Force Queries . 13

8 Intersections 14
8.1 Line Segment Intersections 14

8.1.1 2D . 15
8.1.2 3D . 15

9 Contact 16

10 Future Plans 16

1

1 Dependencies and Setup

In order for the package to work, the following dependencies need to be
installed either manually or via the package manager:

� Gimme DOTS Geometry 2.0.0 or above

� Burst 1.8.0 or above (might work with lower versions; untested)

� Collections 2.0.0 or above

� Mathematics 1.2.0 or above (might work with lower versions; untested)

Additionally, the platform you are building for needs to support Compute
Shaders. You can always check if that is the case by examining the System-
Info.supportsComputeShaders flag (most platforms support them).

Furthermore, depending on how you use the code, you might want to
enable /unsafe code in the Project Settings�Player. Also don’t forget
to enable burst compilation in the Editor for performance:

ò
Most features described in this manual are used in the sample
scenes. Looking at the code of them may be the fastest way of
understanding the package.

2 Introduction

Gimme GPU Geometry, an extension of Gimme DOTS Geometry,
is a collection of algorithms in geometry that can run on the GPU. It has the
capability to vastly exceed the speed and performance of similar algorithms
on the CPU, provided they can be sufficiently parallelized.

If used with care, this might give you the options to render and manage
far more entities as would be possible otherwise, generate particle / fluid
simulations or it might generate lookup tables for nearest neighbor searches
faster, etc. It can be either used on the GPU alone or as a hybrid between
CPU and GPU calculations.

I want however take this introduction as an opportunity to give you a
fair warning. While the algorithms in this package run faster than what is

2

possible otherwise, because of CPU-GPU communication, you will only get
the most out of the package if you have a solid knowledge of shaders!

Why is that so? Because, by being able to write your own shaders you
will be able to use the results of the algorithms directly on the GPU as well,
without touching the CPU. That said, even if you do not know HLSL well
enough yet (ShaderGraph is not going to work directly, as it cannot use
StructuredBuffers yet), there are plenty of shader examples and sample
scenes in the package to learn from.

So how much performance is gained? This is a surprisingly difficult
question to answer. As of now, Unity does not have a way to to profile
the individual compute shaders (although it is planned). Therefore, it is
advised to use an external tool like RenderDoc for now. Additionally the
performance varies a lot between different GPUs, Vendors and of course
platforms.

But to no longer avoid an answer: I have checked each compute shader
individually with RenderDoc on my GTX 1070 and found the performance
compared to DOTS Geometry (with a 12-core CPU) somewhere in the range
of 3- to a 100-times faster or more, depending on the type of problem.
This tremendous speedup is of course biased as I purposefully selected the
algorithms that are easily parallelizable, gaining the most from outsourcing
calculations to the GPU, compared to DOTS Geometry.

3 About Compute Shaders and the GPU

As compute shaders are still somewhat shrouded in mysticism and con-
sidered occult knowledge, I’ll give some brief explanations about the basic
concepts. This information is not necessary to use the package, but it will
help in understanding it.

Compute Shader, aptly named, compute things instead of rendering.
Their main advantage is that they can use the thousands of SIMD-Processors
on the GPU, that are otherwise used for the fragment-stage in a regular
shader. To use them simultaneously, work is split up into threads and thread
groups (and wavefronts). This process is done by dispatching the shader.

Each thread then gets assigned an ID, that is used to determine what
data it is allowed to access and write to (usually, in most cases).

The results of a calculation are then written into either a texture or
a buffer in parallel (you can think of it as an array). To also then return
those to the CPU-side, there are a multitude of ways, synchronous and
asynchronous.

Typically, this involvesGraphicsBuffer and a call toGetData() of the
same (synchronous), or anAsyncGPUReadbackRequest withAsyncG-
PUReadback.RequestIntoNativeArray (asynchronous). It should be
noted that reading back data from the GPU (and writing to it as well) is a

3

https://renderdoc.org/

slow memory operation and should be used as sparingly as possible. In the
best case scenario, any results of a compute shader are passed on to another
subsequent shader.

It should also be noted that reading back asynchronously has a delay
attached that can span multiple frames. Usually, as everything involved in
this package is not affecting the visuals directly, this is of minor concern
though.

3.1 Graphics Fence

Sometimes, if you want to check if a compute shader has finished executing
on the GPU after dispatching it, you can create and store aGraphicsFence.
This is done by calling Graphics.CreateGraphicsFence() immediately
after dispatching a compute shader. Make sure the stage of the method is
set to ComputeProcessing. The struct that is returned has a field called
passed that you can check (each frame).

There is another option when creating a graphics fence, and that is
whether it should be used to synchronize behaviour on the CPU or the
GPU. However, very important, GPU synchronization is not yet widely
supported for different platforms and graphics APIs (DirectX 11 does not
support it). You can check for the support by examining the System-
Info.supportsAsyncComputeQueue. The package does not assume (yet)
that it is supported and never depends on it (for now).

3.2 Buffers

Buffers, in their simplest form, are essentially arrays (except, in this partic-
ular case, having 128 bits for each element). They come in three forms:

� Readable (also referred to as Resources)

� Readable and Writable (also referred to as UAV)

The first form is the default, while the second is denoted with an RW in
front of the name. E.g. there exists a simple Buffer in HLSL that is only
readable. Then there also exists a RWBuffer that can also be written to.

This is of course somewhat simplified (for example, there are also con-
stant buffers), but in essence this is all they are. Additionally, there are
multiple useful flavours of buffers. The most commonly used versions in this
package are Structured Buffers and Append Buffers.

Ok, so why are they needed in the first place? In principle we could store
and sample again everything with textures, however... if we accidentally
filter the texture, then depending on our results this might produce errors.
Additionally, not every texture format is supported on every platform.

4

Therefore, first and foremost, they are used for the same reasons as in
any other programming language: To store arbitrary data and access it
again.

Creating a buffer is quite simple, by just making a newGraphicsBuffer.
To then use and transfer it to a shader you have to call SetBuffer() on it.

3.2.1 Structured Buffers

Structured Buffers are the most common type of buffers you can find in
Gimme GPU Geometry. They literally are capable of storing structs. There
is also of course a RWStructuredBuffer, allowing you to even write (not
quite) arbitrary structs to an output array!

As with any buffer, care should be taken to not write or read outside the
bounds of it. This necessitates either sending an additional integer about
the size of the array to the GPU or calling GetDimensions (in the compute
shader).

How does the GPU know the structs sent from the CPU (by calling
SetData() on a GraphicsBuffer for example)? The answer is: The GPU
does simply not know. It has to be told in code, by recreating the same
struct with the same number of bytes. In this document I will refer to
structs that have a counterpart on the GPU as Mirror Structures.

3.2.2 Append Buffers

In addition to be able to hold structs (similar to the StructuredBuffer) an
AppendBuffer (as well as its counterpart ConsumeBuffer) has a hidden
counter variable. Instead of writing directly to it, the GPU will attempt to
Append structs at the position of that counter. After that, the counter is
increased (atomically) by one.

This is is an extremely useful type of buffer when the number of results
is unknown but the order is not important (e.g. the number of lines inter-
secting spheres). Because the counter value is unknown to the CPU, you
first have to (or should) get the same (which is a little bit elaborate and
requires an additional counter buffer to hold the integer - you can find some
examples of that scheme in the code) before you read back the values into
a NativeArray or NativeList.

Clearing an Append Buffer is simply done by calling SetCounter-
Value(0) of the GraphicsBuffer in question. In this way, no new buffer
has to be allocated again (which would be expensive).

3.3 Measuring Performance

If you want to measure the performance of the compute shaders yourself,
first load RenderDoc in Unity.

5

Then run the scene that dispatches the compute shader you want to
measure. Press the button in the picture to create a snapshot.

RenderDoc will open and with a double click you will be able to see a list
of all the events that have happened on the GPU in that frame, including
all Dispatches of Compute Shaders.

By pressing the clock, you can time the actions in this list, giving you
(accurate) estimates of how long each step took in the frame.

This covers the basics of measuring the performance. RenderDoc also
allows you to go deeper though as well, and I recommend checking out the
website and documentation for that.

3.4 Debugging

Debugging on the GPU is notoriously difficult when it comes to the be-
haviour. RenderDoc, again, can help in that regard. Sometimes it suffices
to have a look at a specific compute shader and the contents of its buffers.
Once you have a snapshot (see previous section), you can easily access those
by clicking on the Resource Inspector.

6

You can select a buffer (as they do not have proper names sometimes, it
is recommended to look at the pipeline stage first to find the right compute
shader). Afterwards, if you press the View Contents button, a window
will open that shows the contents of that particular buffer (in bytes)!

Converting bytes to structs again is maybe not very user-friendly, but it
beats the alternative of guessing problems any day.

4 Classes and Data Structures

4.1 GPU Job Manager

ò
The GPU Job Manager has to be part of every scene that wants
to use Gimme GPU Geometry!

Next to some simple functions, theGPUJobManager (MonoBehaviour)
is expected to be part of the scene to start various coroutines for awaiting
certain tasks on the GPU (that have to be executed in order).

Note that not all algorithms technically require it, but to be safe, always
add it first to a scene when using the package.

4.2 GPU Jobs

GPU Jobs (class: GPUJob) are intended to be the pardon to regular Jobs.
In contrast to burst-compiled code that is executed, here it is HLSL and
compute shaders.

Similar to Jobs, you first schedule them (with optional dependencies) to
get back a GPUJobHandle. Automatically, the compute shader will be
dispatched based on the parameters.

The dependencies can either be other GPU Jobs or regular Burst Jobs
(in that case, the compute shader is dispatched after the regular Job has
finished).

You can also pair the Job with an asynchronous read back into a Na-
tiveArray. For that, use the optional GPUReadbackContainer parame-
ter of the constructor of the GPUJob class.

7

To query if a GPU Job has completed, call IsCompleted() of the GPU-
JobHandle. The method will return true if the shader itself and all its
dependencies are completed.

As of now, the system is yet incomplete and not very well tested. It
will work as intended with the given API and the example scenes are using
them, but many things are not yet supported (i.e. the only GraphicsBuffers
types supported right now for read back are StructuredBuffers and Ap-
pendBuffers). As the functionality of this class is just intended to ease the
ordering and dispatching of compute shaders, it is always possible to order
them yourself should the class fail.

4.3 Mirror Structures

Mirror Structures are structs that exist on both the CPU and GPU. In
other words, these are data types that are supported by the compute shader
library provided with this package.

These include:

� LineSegment2D (DOTS Geometry)

� LineSegment3D (DOTS Geometry)

� Triangle2D (DOTS Geometry)

� Triangle3D (DOTS Geometry)

� Plane (Unity)

� Rectangles (Unity - use extension ToVector4())

� Bounds (Unity - use extension ToGPUBounds())

Spheres and circles, similar to DOTS Geometry, do not have their own
structs. If they are sent to the GPU, they have the following format (float4):

� Circle: (X,Y,Radius2, 0)

� Sphere: (X,Y, Z,Radius2)

4.3.1 GPU Polygons

NativePolygon2D can also be used on the GPU. However, as they can
be arbitrarily large, they are stored in buffers (which have to be disposed
again). To manage polygons on the GPU, use the class GPUPolygon2D.

To generate a GPU polygon from an existing one, call the static method
GPUPolygon2D.ConstructFrom(). Currently, GPU Polygons are not
supporting holes. This is for now more a performance consideration and the
uses of the class in the package. Once it is necessary to have polygons with
holes, the support for them will follow.

8

5 Spatial Acceleration Structures

5.1 Bins

Bins, more commonly known as grids, provide a way to do queries on points
faster than without any structure. It should be noted though, that for the
most common use-cases, brute-force queries are more than enough.

Bins do only become necessary when having an incredible amount of
points (far more than 10k, like in simulations) and a vast amount of queries
(all-radius queries for example). Otherwise, for simplicity, brute-force queries
should be preferred. If in doubt, profile both and weigh the advantages and
disadvantages.

The two classes are calledGPU2DSpatialBins andGPU3DSpatialBins.
The reason they are not named ”grids” is for a user (that did not read the
manual) to not make the assumption that each cell can only hold a single
value. However, in this document the terms bin and cell, and bins and grids,
are used interchangeably.

Figure 1: 2D GPU Grid - Ra-
dius Query

To create a grid, simply call the (code-
documented) constructor, where you can
provide the size and capacities of the bins,
queries and results. Additionally, you have
to pass a GraphicsBuffer that holds all the
positions in the grid. It is allowed to change
in size (i.e. it can be an Append Buffer)
and each entry should contain three floats
for the position (float3).

Each bin has a fixed maximum amount
of entries it can hold, which is provided
by the binCapacity of the constructor.
Should it be exceeded, then the additional
entries will simply be ignored - which in
turn means that the query results will al-
ways be correct, but may be incomplete

should any capacity be insufficient.

Once it is created, the process of doing queries in a grid on the GPU
from the CPU is the same in 2D and 3D, and is done with the following four
steps:

� Queuing an arbitrary amount of queries with the provided methods
(e.g. QueueRadiusQuery(), etc.)

� Calling SendQueryQueueToGPU() to actually send the data to
the GPU

� Starting the coroutine DoQueries() and awaiting its completion

9

� Calling GetQueryResult() to optionally read back the results (and
the number of results) to the CPU

Each entry in the results buffer consists of two integers. The first points
to the index of the query - for example, if you executed 40 radius queries,
then an index of 15 means that the result was gathered on the GPU while
executing the 15th query. The second integer points to the index in the
position buffer you provided (with the constructor) - this gives you a way
to find the actual position again that were inside the query (if needed -
commonly the indices are enough for further computations).

You can also use these results in further shaders (and it is recommended
to do so by simply adding a StructuredBuffer<int2> to a regular shader).

5.1.1 2D Grids / Bins

The following queries are supported:

� Radius Query (QueueRadiusQuery / QueueRadiusQueries)

� Rectangle Query (QueueRectangleQuery /QueueRectangleQueries)

Additionally, All-Queries can be queued (see DOTS Geometry manual
for an explanation). However, as sending thousands of queries to the GPU
would be expensive, they are also scheduled via a compute shader. Make sure
that the query capacity vastly exceeds the number of positions. Additional
care has to be taken when querying All-Queries and regular queries (which
should be rare). In that case, the regular queries should be queued and sent
before the All-Query compute shader dispatches.

The current All-Queries are:

� All-Radius Query (QueueAllRadiusQuery)

� All-Varying-Radius Query (QueueAllVaryingRadiusQuery)

The All-Varying Radius Query is a variant, where each point in the
position buffer may search for a different radius (also stored in a Graphics-
Buffer).

5.1.2 3D Grids / Bins

The following queries are supported:

� Radius Query (QueueRadiusQuery / QueueRadiusQueries)

� Box Query (QueueBoxQuery / QueueBoxQueries)

10

Figure 2: 3D All-Radius
Query, warmer colors = more
results

Additionally, All-Queries can be queued
(see DOTS Geometry manual for an expla-
nation). However, as sending thousands
of queries to the GPU would be expen-
sive, they are also scheduled via a compute
shader. Make sure that the query capacity
vastly exceeds the number of positions. Ad-
ditional care has to be taken when query-
ing All-Queries and regular queries (which
should be rare). In that case, the regular
queries should be queued and sent before
the All-Query compute shader dispatches.

The current All-Queries are:

� All-Radius Query (QueueAllRadiusQuery)

� All-Varying-Radius Query (QueueAllVaryingRadiusQuery)

The All-Varying Radius Query is a variant, where each point in the
position buffer may search for a different radius (also stored in a Graphics-
Buffer).

5.2 KD-Trees

Similar to GPU Polygons, GPU KD-Trees may be created by using an exist-
ing Native2DKDTree or Native3DKDTree from DOTS Geometry. To
do that, simply call the static methodsGPU2DKDTree.ConstructFrom()
or GPU3DKDTree.ConstructFrom().

Figure 3: 3D KD-Tree, lines
connect the input to NN

Not every operation of the CPU KD-
Trees are yet supported. In fact, as of now
the only queries the GPU-versions are ca-
pable of are nearest neighbor searches.
This is due to the fact that for other queries
like a simple radius-query, the amount of
threads that have to be created is not
known in advance, making the dispatch-
ing complicated (it would have to be done
with multiple invocations). However, it is
planned to at least support kNN as well in
the future.

The NN Search is done simply by calling
one of two methods:

� ComputeNearestNeighbors() (no reading back to the CPU)

11

� GetNearestNeighbors() (reading back the data to the CPU after
completion)

You will need to provide a GraphicsBuffer containing the queryPoints
and a container to store the resulting positions. Both methods will return
a GPUJobHandle.

6 Tesselations

6.1 Voronoi Diagrams

Figure 4: 3D Voronoi of Tri-
angles - Raymarched

For an explanation of Voronoi Diagrams
see the DOTS Geometry manual. All the
methods for calculating them can be found
in the two classes Voronoi2DGPU and
Voronoi3DGPU. Each call requires the
dimension of the grid or texture, the bounds
in the world, a number of input sites (which
can be Points, Lines or Triangles) and a
distance metric (Euclidean or Manhat-
ten).

For example, a 3D Voronoi Lookup Ta-
ble of Triangles with an Euclidean Distance
Metric, once it has been calculated, would
allow you to lookup the nearest triangle in
space to a given input position within the

cube without any calculations, raycasts, etc. (see picture).

6.1.1 Voronoi Lookup Tables

Voronoi Lookup Tables (VoLTs) are tables or grids containing the index to
the closest site of the diagram. They can largely help with a quick approxi-
mate lookups of the nearest neighbors or sites from a given position.

Calculating this table is also possible with DOTS Geometry, yet because
of the parallel nature of the computation, this version should be much pre-
ferred. In addition to the parameters mentioned above, you will also need
to provide a NativeArray<int>for reading back the data.

The tables can be calculated for 2D and 3D and for the following types:

� Points of type float2 / float3 (CalculateVoronoiLookupTable())

� Lines of type LineSegment2D / LineSegment3D
(CalculateLineVoronoiLookupTable())

� Triangles of type NativeTriangle2D / NativeTriangle3D
(CalculateTriangleVoronoiLookup())

12

6.1.2 Voronoi Textures

Voronoi Textures are the colored versions of the tables in texture form. Each
index is assigned a color from an input array (you have to provide). The
result is written to a RenderTexture of your choice, and no data is read
back.

The textures can be computed for 2D and 3D and for the following types:

� Points of type float2 / float3 (CalculateVoronoi())

� Lines of type LineSegment2D / LineSegment3D
(CalculateLineVoronoi())

� Triangles of type NativeTriangle2D / NativeTriangle3D
(CalculateTriangleVoronoi())

6.1.3 Voronoi SDFs

Signed Distance Fields store the distance to a shape for each point in a
texture and, how the name suggests, with a + or - sign depending on if the
point is inside a shape or outside a shape (e.g. inside a triangle or outside
a triangle).

Similarly, a Voronoi SDF Texture stores the closest distance to each
shape / site in the diagram and assigns a + or - sign to it depending if the
point is inside our outside (if applicable).

They can be computed for 2D and 3D and for the following types:

� Points of type float2 / float3 (CalculateVoronoiSDF())

� Lines of type LineSegment2D / LineSegment3D
(CalculateLineVoronoiSDF())

� Triangles of type NativeTriangle2D / NativeTriangle3D
(CalculateTriangleVoronoiSDF())

7 Special Queries

7.1 Brute Force Queries

Brute Force Queries are queries executed without any underlying data struc-
ture i.e. simply each point or shape is checked individually to test if it satis-
fies the query condition. For example, for checking which points are within
a circle, each position in the complete data set is checked if it falls within.

13

Figure 5: Brute Force Polygon
Query

This might seem inefficient at first (com-
pared to a Quadtree for example), how-
ever, its simplicity makes it very easy to
parallelize and fully utilize the GPU to its
full potential. With the amount of cores
available, for a single query, hundreds of
thousands of points can easily be managed.

As long as the number of queries is low,
this option is preferable to GPU Bins.

The classes responsible are Brute-
ForceQuery2DGPU and BruteForce-
Query3DGPU. Each query can either be
executed with or without reading back data
again.

2D In the 2D case, the following three query types are supported:

� Circle (ComputePointsInCircle())

� Rectangle (ComputePointsInRectangle())

� Polygon (ComputePointsInPolygon())

3D In the 3D case, the following two query types are supported:

� Sphere (ComputePointsInSphere())

� Box (ComputePointsInBox())

Each query will simply return the indices to the results (the same way
as the Bins). You can then get back the position (optionally) by simply
accessing it from the input buffer (you provided).

8 Intersections

Compute Shaders are provided in the package that allow you to intersect
shapes with each other (in parallel). This can be used for example to high-
light specific parts of the scene that intersect, or to do simple raycasts and/or
physics calculation on the GPU.

8.1 Line Segment Intersections

14

Figure 6: Line Segment -
Plane Intersections

The line intersection shaders in the package
enable you to find out where a number of
line segments (stored in a GraphicsBuffer)
cut another shape (circles, boxes, planes,
etc.). As the number of points a line seg-
ment may meet other shapes may vary, dif-
ferent structs are stored in the results.

The output of each query will be written
either to a NativeArray (reading back) or to
a GraphicsBuffer of your choice (the results
can be used in a subsequent shader this way
- recommended way). As the number of in-
tersections is not known beforehand, this
GraphicsBuffer has to have the target set to Append and sufficient capac-
ity to hold all the intersections when creating it.

8.1.1 2D

In the 2D case, a GraphicsBuffer consisting of LineSegment2D has to be
provided into method calls to the class LineIntersection2DGPU. Addi-
tionally, a buffer of the shapes you want to intersect has to be chosen as well.
The data layout varies depending on the query (see Mirror structures for
more information).

Three types of queries are available for the 2D case:

� Rectangles (IntersectLineSegmentsWithRectangles())

� Circles (IntersectLineSegmentsWithCircles())

� Line Segments (IntersectLineSegments())

The last query type will simply check the intersections that exist between
the 2D Line Segments and no further GraphicsBuffer holding any shapes is
required.

8.1.2 3D

In the 3D case, a GraphicsBuffer consisting of LineSegment3D has to be
provided into method calls to the class LineIntersection3DGPU. Addi-
tionally, a buffer of the shapes you want to intersect has to be chosen as well.
The data layout varies depending on the query (see Mirror structures for
more information).

Three types of queries are available for the 3D case:

� Boxes (IntersectLineSegmentsWithBoxes())

15

� Spheres (IntersectLineSegmentsWithSpheres())

� Planes (IntersectLineSegmentsWithPlanes())

9 Contact

For any questions or suggestions, you can reach me anytime by the following
email-adress:

blenderfan@gmx.at

There is also a discord server, which is usually the fastest way to reach
me:

Parable Games - Discord

Alternatively, you can also find some social media links and contact in-
formation on my website:

https://parable-games.com

For this package in particular, that involves shaders and geometry at the
same time, please do not hesitate to ask whenever you encounter a problem
or have trouble understanding something!

10 Future Plans

Some additional features I plan to implement in the near future:

� Marching Squares and Cubes

� All-Rectangle Queries for Grids

� KD-Tree kNN

� Bitonic Sort

� Bindable Shader Properties

16

mailto:blenderfan@gmx.at
http://discord.gg/wGKEapzPPK
www.parable-games.com

Thank You!

Your purchase of Gimme GPU Geometry enables me to continue devel-
oping code and techniques for game-development in an independent way!

17

	Dependencies and Setup
	Introduction
	About Compute Shaders and the GPU
	Graphics Fence
	Buffers
	Structured Buffers
	Append Buffers

	Measuring Performance
	Debugging

	Classes and Data Structures
	GPU Job Manager
	GPU Jobs
	Mirror Structures
	GPU Polygons

	Spatial Acceleration Structures
	Bins
	2D Grids / Bins
	3D Grids / Bins

	KD-Trees

	Tesselations
	Voronoi Diagrams
	Voronoi Lookup Tables
	Voronoi Textures
	Voronoi SDFs

	Special Queries
	Brute Force Queries

	Intersections
	Line Segment Intersections
	2D
	3D

	Contact
	Future Plans

