
Manual

Contents

1 Workflows 2
1.1 Dependencies and Setup . 2

1.1.1 Migration . 2
1.2 Basics . 2

1.2.1 Feature Comparison 3
1.2.2 Material Controller . 4

1.3 Image-Effect Workflow . 6
1.3.1 Builtin . 7
1.3.2 URP . 7
1.3.3 HDRP . 8

1.4 Shadowcaster Workflow . 8
1.5 Material Workflow (Advanced) 10

1.5.1 Talking Code . 10

2 Noise Texture Generator 14

3 Sun Shafts 16

4 Shader Stripping 17

5 Additional Tools 18
5.1 Shader Tools (Advanced) . 18
5.2 3D Texture Tools (Advanced) 19
5.3 Make 3D Textures Seamless 20

6 Useful Information 20
6.1 Performance . 20
6.2 Memory . 20
6.3 Ideas . 21

7 Contact 21

8 Future Plans 22
8.1 Future . 22
8.2 Far Future . 22

1

1 Workflows

1.1 Dependencies and Setup

In order for the package to work, the following dependencies need to be
installed either manually or via the package manager:

� Editor Coroutines 1.0.0 or above

1.1.1 Migration

Some custom editors use hard-coded paths for finding certain assets (e.g.
textures, compute shader etc.). This prevents moving the folder around in
the project. You can therefore find a tool called Migration Helper under
Window� Gimme� Cloud Shadows�Migrate. Simply select the
directory you want the package to go into, and the tool will handle the rest.
Make sure to close Visual Studio or any other resource-blocking programs
before migrating.

1.2 Basics

There are in essence four ways to get decent semi-transparent cloud shadows
(I can think of). Those are: Using a fullscreen image effect / fullscreen
pass, using a shadowcaster with some form of dithering, simulating
the effect with a global texture in each shader in a material-based way
and last but not least with ray-tracing volumetric clouds.

As ray-tracing would work by default without additional code if you
and your customers have the hardware, this package focuses and provides
solutions for the other three options. And all of those have the same thing
in common: They need one or more materials.

The way this package is structured is therefore, that there is a global
material controller (GCSController) that provides the shaders with the
correct information for them to work. All the workflows are then just build-
ing upon this class.

Each option has some advantages and disadvantages regarding the effort
required and the visual quality.

In addition to that, there is also a procedural texture generator included
to create the shadow textures (but it can be used for much more).

2

1.2.1 Feature Comparison

Comparison of the different Workflows

Workflow Pros Cons

Image-Effect Cheap Overshadowing
Easy Setup No control which material is affected

Semi-Transparency

Shadowcaster Cheap No Real Semi-Transparency
(Relatively) Easy Setup Results vary with shadow setup

Material Best Visual Quality Requires good shader knowledge
Very flexible Requires a lot of work

Semi-Transparency Performance

3

1.2.2 Material Controller

Figure 1: Material Controller

The controller is the
heart piece of this pack-
age. You should place
/ instantiate it into the
scene each time you
want the cloud shadow
effect regardless of which
workflow you’re using.
The component talks to
all the materials and
shaders by using global
properties. The code
also has some methods
that you can easily call
to change the behaviour
and the settings at run-
time.

You can find a pre-
fab with some reason-
able default-values un-
der Runtime � Pre-
fabs�GCSController.

The controller has a
lot of options regarding
on how the shadows are
rendered, and here are their explanations:

� Shadow Texture: The global texture that is sent to all the materials.
When using the controller for shadows (see Light Mode), an alpha-
value of 1 and a color of black means full shadow-strength

� Texture Scale and Offset: Applies scale and offset in world space
(not dependent on the UVs of the objects)

� Layer Strength: Adjust the Intensity for each layer individually

� Intensity: 0 = No Shadows; 1 = Full Shadows; more than 1 = Darker
than the normal Shadows

� Shadow Tint: Tints the color of the texture, which in turns can
change the shadow color. I am wording this carefully as a tint can not
be applied to a black texture (which is what you will usually have. So
if it does not work � Texture is probably black to begin with)

4

� Angle Relaxation: This is best explained with an example. Imagine
having the texture projected straight down from above upon the world.
Now imagine if we have a building there too with straight walls. If
we did just that, then we would only sample one texture row of the
shadows, which would result in dark stripes going down the walls. It
would look like some visual artifact to the player. To remove that
effect and sample from more than one row, we essentially skew and
relax the normals of the walls a little bit so that the angle is not 90°
to the light direction anymore internally. Which is exactly what this
option does!

� Sun: Because of optimization reasons (calculating matrices on the
CPU rather than the GPU), the main light source should be provided
to the controller. Without it, shearing the shadows will not work (but
otherwise nothing is affected)

� Fade Shadows with Fog: Only useful with the fullscreen effect.
Fades the shadows into the fog (only Builtin + URP). The other work-
flows already handle fog correctly.

� Light Mode: There are two modes available by default (easily ex-
tendable). They are attenuation and additive

� Move Clouds: It would be kind of boring if they couldn’t move,
wouldn’t it. You can also simply call internal code to move the clouds
in your own way

� Shear Clouds: Real clouds are not 2D texture projections, but have
a 3D structure. This means that realistic shadows also stretch with
the light direction (as any other non-flat 3D object). We can simulate
this effect by shearing the texture with a strength representing the
average cloud height

� Rotate Clouds: Rotating in this sense means that the texture itself
is rotated. The further away you go from the center (also an option)
the faster the rotation. A slow rotation and/or an initial offset can
increase the visual variety

� Clamp Clouds: You can limit the shadows to a rectangle area in
world space. Because those bounds can also be moved at runtime,
this is useful for creating cloud shadow fronts. To avoid hard borders,
the strength of the shadows falls off at the border using either a circular
falloff model or a rectangular one (calculating the distance field of a
rectangle). Another potential use is for tornadoes. Just saying.

5

� 3D Textures: If you choose to use 3D Textures, the shadows are
animated over time. Previously, it was not possible to make 3D Tex-
ture seamless (it now is: Make 3D Textures Seamless). Still, it can
be beneficial to let the timer value go back-and-forth (Pingpong), so
as to never go ”beyond” the 3D texture (i. e. when you have UVW
coordinates, the W-coordinate is never going below 0 or above 1). The
two options right now are triangle (linear) and sine.

� Second Layer: Adds a second texture with a second set of options.
This also increases variety (at the cost of memory and performance)

� Triaplanar Coordinates: This feature is more of a gimmick and only
useful when using an image-effect shader or using additive light mode
and the movement direction is important. It is a little bit technical:
Essentially the clouds move in the wrong direction in areas that are
already in the shadow. Usually that is no problem because you can’t
see those.

\
Without the GCS Controller, no workflow/option will work! Al-
ways have it somewhere in the scene.

1.3 Image-Effect Workflow

The image-effect works in a similar fashion to a regular post-processing
effect. It adjusts the color to imitate shadows. Internally the world-space
coordinates and world-space normals of each pixel are reconstructed and
used in the regular cloud shadow shader logic. But because there is no
way of knowing how to shade a pixel based on the material, you produce a
problem I labelled ”overshadowing” in the feature comparison. In essence
you’re darkening already shaded areas again. Technically, you can use the
shadow map in a post-process effect, but it still does not look quite right
(I’ll investigate in the future)

ò
A requirement for reconstructing the information is that your
graphics API supports depth textures. Most of them do, but you
can check here: Cameras and depth textures

The shader used for all of this is calledGimmeCloudShadows�Cloud
Shadows Image. The setup is done in two steps.

The first one is to create a material from this shader. No values need to
be provided, the material alone somewhere is enough.

The next step is then different between the rendering pipelines.

6

https://docs.unity3d.com/Manual/SL-CameraDepthTexture.html

1.3.1 Builtin

For the Built-in Rendering Pipeline you add the component ”GCS Image
Effect” to the main camera and drag-and-drop the material you created
into the ”Image Material” slot. And... that’s it. Done.

ò
When using Post-Processing in Builtin, make sure that you do
not render directly to the camera target (an option in the Post-
process Layer)

1.3.2 URP

For the Universal Rendering Pipeline, you first locate the URP.unitypackage
and extract the content.

Afterwards you will have to locate your Renderer Data. It is usually un-
der Assets/Settings. In this case, using forward rendering, the scriptable-
object-file is called ”ForwardRenderer.asset” in older versions. In gen-
eral you want to find all Universal Render Data objects. Looking at the
inspector, you should be able to add a Render Feature like here:

Add the GCS Image Feature. The game view will turn black and
your inspector should look something like this:

Drag-and-drop the material you created earlier in the ”Image Mate-
rial” slot. When done correctly, the game view should look normal again.

7

1.3.3 HDRP

For the High Definition Render Pipeline, you first locate the HDRP.uniypackage
and extract the content.

Afterwards you’ll have to attach a Custom Pass Volume (HDRP-specific
thing) to an GameObject of your choosing in your Scene.

Drag-and-drop the material you created earlier in the ”Image Ma-
terial” slot of the Custom Pass (make sure the material uses the HDRP
variant of the shader). This should finish the setup.

1.4 Shadowcaster Workflow

A shadowcaster is nothing more than an object that casts shadows. In this
case it is an invisible mesh with some geometry that uses a special shader.
You can find it as GimmeCloudShadows�Cloud Shadows Only.

ò
You can’t use the additive light mode of the controller for this
workflow... you can only cast shadows.

Now, because it is so dependent on the Unity Shadows, the quality of
this method varies a lot, depending on your setup of the shadow map res-
olution and shadow cascades. Also, there is no natively supported semi-
transparency for shadows, which is why this is approximated using a dither-
ing method. This is especially apparent when getting very close to a shadow
or if the main light uses hard shadows.

8

On the other hand... this can also make your game really stand out and
could be interpreted as a stylistic choice (dithering is very common in games
that use a cartoon-ish style). Alternatively, you could just simply don’t use
dithering, having a shadow edge like all the other objects in your scene.

The setup is very simple. First, create a material using GimmeCloud-
Shadows�Cloud Shadows Only. Then choose any GameObject and
add the GCSMesh-component to it, like so:

Then add the material you created first to the Cloud Material slot.
And that, in theory, is it (works for each rendering pipeline). However,
depending on your world-, light- and shadow-setup you might not see the
shadows immediately, so maybe you have to move around the plane and the
main directional light a little bit.

The component itself by default creates a subdivided plane at the start,
applies the material and moves it to the position (provided in the inspector).
There are a few settings to adjust, so here is the explanation:

� Dithering: Uses dithering to approximate semi-transparent shadows.
Works better with soft shadows

� Alpha Offset: Subtracts the value from the actual alpha value in the
texture

� Position: Moves the created plane to these coordinates

� Plane Subdivision: The plane has to be subdivided into smaller
parts because of an issue Unity affectionately calls Shadow Pancak-
ing. You can find more information here: Shadow troubleshooting

� Plane Size: The world-space size of the plane

� Custom Mesh: When using a custom mesh, no plane is created and
instead the geometry of your provided mesh renderer is used (a good
choice would be a hemisphere). Make sure that the mesh is also not
affected by Shadow Pancaking.

9

https://docs.unity.cn/Manual/ShadowPerformance.html

From version 2.0.3 forward, you also have the choice of creating a dome
automatically, next to the other two options for meshes (Plane and Custom).

From HDRP 14.0.0 onwards, you might notice sharp borders in circles in
the region around the camera - this is due to Shadow Cascades in theHDRP
Global Settings. You can remove them by adding borders between each
cascade.

1.5 Material Workflow (Advanced)

This workflow yields the best visual results, but the trade-off is some work
and performance. In principle, you include the shader-code from the file
Runtime/Shader/GimmeCloudShadows.cginc into the shaders you’re
using and call the method CloudShadow in the fragment-part. Then you
use the color it returns and (usually) compare it against the shadow atten-
uation.

When you’re using the method, the controller is still going to work for
this shader (because it is global) and therefore all your materials will work
as well.

There are some examples, that show how one could do that, included
in the package. The one worth mentioning is the GimmeCloudShad-
ows/Cloud Shadows Default-shader that works on all rendering pipelines
(Forward). You can use this one as a baseline for creating more advanced
shaders. Another useful one might be the surface shader GimmeCloud-
Shadows/Cloud Shadows Surface Lit (Only Builtin).

ò
You can download all the built-in shaders at the Unity Download
Page. For the shaders of the rendering pipelines: You can find
them inside your packages folder

1.5.1 Talking Code

The process can not really be automated (because it depends on what you’re
using). I’ve provided Forward Rendering Shaders for all Render Pipelines
in the package as a guide, but for anything else you’re kind of on your own
(I was trying Deferred as well, but Unity was crashing so often, especially
HDRP, I rage-quit). However, here is a general outline on what has to be
done:

Shader ”MyShaders/Custom Shader (with Cloud Shadows)”
{

Prope r t i e s
{

. . .
}

10

SubShader
{

Tags { . . . }

Pass
{

Name ”MyPass”

CGPROGRAM

#pragma ta rg e t 3 . 0

#inc lude ”UnityCG . cg ing ”
#inc lude ” Light ing . cg inc ”

//Here you ’ l l have to ente r the c o r r e c t path
// to GimmeCloudShadows . cg inc
// A l t e r na t i v e l y you can a l s o j u s t copy and paste the
// code from the f i l e
#inc lude ”/MyShaderLibrary/GimmeCloudShadows . cg inc

#pragma vertex ver t
#pragma fragment f r ag

. . .

//We need the po s i t i o n and normals . . .
s t r u c t MyVertexData
{

. . .
f l o a t 4 pos : POSITION;
f l o a t 3 normal : NORMAL;
. . .

}

/ / . . . f o r l a t e r c a l l i n g CloudShadow ()
// in the fragment part
s t r u c t MyFragmentData
{

. . .
f l o a t 3 worldPos : TEXCOORD1;
f l o a t 3 worldNormal : TEXCOORD2;
. . .

}

. . .

MyFragmentData ver t (MyVertexData v)

11

{
MyFragmentData o ;

. . .

o . worldPos = mul (unity ObjectToWorld , v . pos) ;

h a l f 3 worldNormal = UnityObjectToWorldNormal (v . normal) ;
o . worldNormal = normal ize (worldNormal) ;

. . .

r e turn o ;
}

. . .

f l o a t 4 f r ag (MyFragmentData i)
{

//We have to get the a l r eady e x i s t i n g shadow
// f i r s t somehow . This i s done d i f f e r e n t l y
// depending on the render ing p i p e l i n e
f l o a t atten = GetShadowAttenuation (i) ;

. . .

//This i s the important b i t . The method needs
// j u s t two inputs f o r each p i x e l :
// = The world po s i t i o n
// = The world normal (at that p o s i t i o n)
//As long as you can prov ide that in fo rmat ion
// the c o r r e c t c o l o r i s returned
f l o a t 4 c loudColor = CloudShadow (i . worldPos , i . worldNormal) ;

. . .

//Now we have to apply the c loud co l o r
// to the r e gu l a r c o l o r

//These are the l i g h t modes o f the c o n t r o l l e r
#i f GCS ATTENUATION

//This i s j u s t an example implementation
//but you can use the c loud c o l o r however
//you l i k e at t h i s po int

//When alpha = 1 , we want the attenuated
//shadow co lo r , nothing e l s e
c loudColor . rgb

12

= l e rp (c loudColor . rgb , atten , 1 = c loudColor . a) ;

//We a l s o want to ad jus t depending on the
// i n t e n s i t y s e t t i n g in the c o n t r o l l e r
c loudColor = l e r p (cloudColor , atten , 1 = GCSIntensity) ;

//Get a l l the other l i g h t i n g i n f l u e n c e s
f l o a t 4 l i g h t i n g
= d i f f u s e * min(atten , c loudColor) + ambient ;

//And then f i n a l l y ad jus t the c o l o r
c o l o r = co l o r * l i g h t i n g ;

#e l i f GCS ADDITIVE

. . .

#end i f

r e turn c o l o r ;
}

ENDCG
}

}
}

13

2 Noise Texture Generator

Figure 2: Texture Generator

You can find the Noise
Texture Generator un-
derWindow�Gimme
� Cloud Shadows�
Generate Cloud Tex-
tures. Although the in-
tention was to use it to
create the shadow tex-
tures, it turns out that
this little tool is surpris-
ingly a lot more useful
than envisioned. Based
on noise-generating com-
pute shaders it is pos-
sible to create all sorts
of procedural patterns,
still or animated.

Upon opening the
tool, you’ll be asked if
you want to create a new
texture or load one from
a JSON File. You can
find some example tex-
tures in the Folder Edi-
tor � NoiseParame-
ters.

Once decided, there
are a lot of param-
eters to play around
with (Note: There are
tooltips on some of them).
I encourage to play around
with everything to get a
feel for the tool, but here
a rough explanation of

the values:

� Gradient: Maps the defined colors (max. 8) to the noise values (which
range from 0 to 1).

� Noise Type: The type of the base noise map

� Scale: The scale of all the noise maps (including FBM)

14

� Threshold: You can define a threshold to set all the noise values
below this number to the color at the left in the gradient. E.g. when
the left-most point of the gradient is black, and the threshold is 0.5,
all noise values below 0.5 are mapped to black

� Strength: The base noise map is multiplied by this value

� Fractal: Adds octaves to the base noise map. In essence adding the
same map at double the scale with half the strength.

� Offset: An offset to the start of all noise maps

� Brownian Motion: Fractal brownian motion noise is a special type
of noise that usually goes well with others. It also goes well for doing
domain warping, and therefore has to be activated when you want to
animate the texture

� FBM Strenghth: The FBM map is multiplied by this value (and
then added to the base noise map)

� FBM Octaves: Adds octaves to the FBM map. Kind of the same as
the fractal setting (kind of)

� Ridge: Inverts the values and scales them to a power. When you use
a simplex base noise alone and try out this setting a little bit, you’ll
see the ”Ridges” very easily

� Ridge Offset: This is the value from which the noise is subtracted.
E.g. a value of one means, the result is (1 - color) etc.

� Ridge Power: The values are taken to the power of... the Ridge
Power

� Animate: Enables the moving and warping of the noise along time.
The result can then be saved to a 3D Texture

� Movement: Moves the texture along the direction over time

� Warp Strength: Applies domain-warping to the noise. This option is
only available when using FBM. The precise algorithm was developed
based on gut-feeling, and I encourage you to play around with the code
(it is great fun)

� Warps: You can warp the input noise multiple times, creating a more
fluid-ish animation

� Time: A value going from 0 to 1. When saving a 3D Texture, every
layer is sampled with a different time value (as you would expect)

15

� Contrast: Basically does the same as an image editor

� Tile Texture: Tries to tile the texture to make it seamless. However,
the algorithm is not perfect (it works better with images that have not
too much color-variety)

� Blur Steps: Blurs the texture to reduce the visibility of the seams

The rest of the settings regard the saving of the results. You can either
save it into a 2D Texture, an 3D Texture (when animating) or into a JSON-
File (which just contains all the parameters of this tool).

3 Sun Shafts

Sun Shafts are a post-processing effect, currently attached to the image
workflow (will be separated in the future). Internally, it is a raymarching
shader. However, because the shadows are already provided, the actual
performance cost is a lot cheaper compared to other raymarched sun shafts.
The downside being, that they don’t react as well to light sources (at the
moment: Only the directional light in a limited fashion). Another advantage
of these sun shafts is, because they are tied to the textures, they can be
animated as well (automatically with the texture i.e. when the shadows are
animated, so are the sun shafts)!

Parameters:

� Raymarched Screen Division: Resolution where the raymarching
takes place. E.g. when the division factor is set to 2, raymarching is
done on a half-resolution texture, if it is 3, it is a quarter-resolution
texture etc.

� Depth Supersampling: When the resolution is low, the depth sam-
pling can be quite inaccurate in a way that is visible on the borders (if
the rays do not affect the skybox). This can help mitigate the effects.

� Intensity: Intensity factor, which every pixel is multiplied with

� Density: How fast light is accumulated over distance. Internally, an
exponential function is used

16

� Max Distance: Distance at which raymarching will stop. The shorter
the distance, the less steps are necessary for good results (but the less
sun shafts will be visible)

� Tint: Color of the accumulated light

� Raymarching Steps: Number of steps, the distance / depth is di-
vided by. Higher values result in higher quality, but higher perfor-
mance cost as well.

4 Shader Stripping

Because Gimme Cloud Shadows uses global properties and textures (not
on a per-material basis), we have to tell Unity which variants it needs to
compile in a build. Otherwise it would automatically ignore all of the
cloud shadow shader code. On the other hand, if we would tell Unity to
compile the complete shader, this would take hours to days (depending on
the shader). Therefore, a class is provided that tells Unity which variants it
can safely ignore and therefore leaves us with all the ones we’d like to have.
It is called GCSShaderProcessor.

Figure 3: Image Effect Shader is in-
cluded

But in order for it to work
properly, two things have to be
done. First, we have to include
the shaders under Project Set-
tings�Graphics. What you have
to include depends on your work-
flow. If you use an image effect,
include the Cloud Shadows Im-
age Shader, if you use a shadow-
caster, include the Cloud Shadows Only Shader. And if you’re using
the material-workflow... well, you will have to include all your shaders there
(and do additional shader stripping on your own).

Figure 4: Shader Keywords not in
sync

The second part is the easy one.
Find the controller and press the
button that says Set Shader Key-
words for Build. This automati-
cally searches for the keywords that
can be ignored and adds them to a
list, which you can find in Project

Settings�Gimme Cloud Shadows. You can manually change that list
if you want (and dare to).

For more information about Shader Variant Stripping, you can also
watch my YouTube-Tutorial as well: Shader Variant Stripping

17

https://youtu.be/ipDUSGlEHK8

\
HDRP Shaders have a lot of shader features. The way Unity
provides options to strip variants in code can be unfeasible in
this case (there are several trillion options). It is a rare problem,
but if you encounter it, you’ll have to set the keywords manually
in a material and have a scene reference to it!

5 Additional Tools

5.1 Shader Tools (Advanced)

There are two tools, that provide you with an automated way to modify the
shaders and materials without coding. The first is the Material Keyword
Tool and the second one is the Shader Property Exposing Tool. Both
of them are used when you want to have multiple materials with different
properties. In other words if you want to have materials or shaders with lo-
cal keywords or local properties that are not controlled by the global GCS
Controller.

Figure 5: Material Keyword Tool

The Material Keyword Tool
allows you to set shader/mate-
rial keywords for a given material.
It has the same functionality as
writing the keywords (which you
can find in the static class GC-
SShaderKeywords) into the ma-
terial using the debug inspector. It
is important to know, that as soon
as the material differs from the set-
tings in the GCS Controller, you will have to adjust the shader stripping
in order for it to work in builds.

Figure 6: Shader Property Exposer

The Shader Property Expos-
ing Tool is a handy tool allow-
ing you to override the global prop-
erties with local ones by expos-
ing them. This can be useful,
say, if you want for example dif-
ferent shadow textures for different
shaders / materials. Contrary to
overriding keywords, this does not
affect the shader variants (except
that you have two shaders now in-
stead of one of course). Depending
on your situation this might require
some additional code written from

18

your side, such that the GCS Con-
troller remains global, or additional work by having to update the different
materials separately.

5.2 3D Texture Tools (Advanced)

For the sake of completion, there are two tools regarding 3D Textures.
You’re likely to have some of them already, either from other packages or
self-made. The two provided are the 3D Texture Creator and the 3D
Texture Combiner.

Figure 7: 3D Texture Creator

The creator is used to combine
separate 2D Textures into a single
stacked 3D Texture. The resolution
can be freely chosen, so it is pos-
sible to combine different-sized tex-
tures (they are sampled with bilin-
ear filtering). The reason this tool
is included, is that you might want
to create the 3D Texture in another
program, for example by rendering

the frames in an external software like Blender.

Figure 8: 3D Texture Combiner

Speaking of blending, the com-
biner there to weld different 3D Tex-
tures together. This can be used
to further add some details (for ex-
ample by combining different cloud
textures with different noise scale),
but it is also a way to save mem-
ory, by combining two cloud layers
into one with little sacrifice (assum-
ing the textures are largely trans-
parent). Again, the resolution can
be chosen freely (because the values
are sampled).

19

5.3 Make 3D Textures Seamless

Figure 9: 3D Texture Creator

This tool enables you to make ar-
bitrary 3D textures seamless. The
quality of the result varies based on
what you want to tile (straight lines
won’t work very well; best suited for
natural structures). Simply add the
texture to the slot, choose a destina-
tion path and press ”Make Seam-
less”. Depending on the size of
your texture, this might take a while
(this is also the reason why Editor-

Coroutines are now a dependency.

6 Useful Information

6.1 Performance

As an fullscreen image-effect and a shadowcaster are actually quite cheap,
the most performance is lost using the material-based approach. However,
the performance-impact should not be that much greater than with other
additional material properties (e.g. using a normal map or an occlusion
map). So to improve GPU performance, the same rules should be applied
as always (here a quick reminder):

� Use as few materials as possible (for example by using a texture atlas)

� Use GPU instancing or static + dynamic batching

� Reduce the quality and the amount of features necessary for materials,
especially those used on small objects

� Reduce the amount of additional lights (not the main light source)
when using Forward Rendering

6.2 Memory

Because global textures are used, the memory footprint in RAM and VRAM
is actually quite low. However, especially when using animated textures (3D
Textures), the space-requirement can become very high. You can either re-
duce the spatial dimensions (the texture resolution) or the animation quality
(the height of the 3D Texture, i. e. less frames).
An alternative solution is to create the textures on the fly via the compute
shaders. However, this solution has a performance-cost attached to it. You

20

can find the feature hidden under Advanced in the controller. Profiler tests
resulted in 0.5ms for a 256x256 Texture per frame on my GPU. Not cheap,
but not too expensive either for creating a never-repeating cloud shadow
pattern.
Another point of optimization are the shader variants (because they have
to be kept in the memory as well). Please make sure therefore that all the
features you don’t need are in the exclusion list in the Unity Project Set-
tings (this is automatically done when pressing ”Set Shader Keywords
for Build” in the GCS Controller)

6.3 Ideas

Here are some ideas, on what else you can do with the code in the package:

� Using theGCSTextureGenerator, one can create not only shadows,
but an infinite variety of seamless, low-res textures at runtime (e.g.
simulating flowing water or molten lava

� It is possible to combine the workflows to create interesting effects
(e.g. you can have cloud shadows (attenuative shadowcaster) and a
lightning effect (additive image-effect) at the same time)

� Because you can adjust the color additively too, you can simulate all
sorts of lighting effects as well. There is a sample in the package that
shows on how to emulate caustics in a bowl of water just as an example

7 Contact

For any questions or suggestions, you can reach me anytime by the following
email-adress:

blenderfan@gmx.at

There is also a discord server, which is usually the fastest way to reach
me:

Parable Games - Discord

Alternatively, you can also find some social media links and contact in-
formation on my website:

https://parable-games.com

It is, for clarification, not required to credit my name when using my tools
and packages. However, it is very much appreciated if you do!

21

mailto:blenderfan@gmx.at
http://discord.gg/wGKEapzPPK
www.parable-games.com

8 Future Plans

8.1 Future

List of planned features for the next release:

� Temporal Jittering for Sun Shafts

� 3D Noise Methods

8.2 Far Future

Some additional features I plan to implement in the far future:

� Raymarched Clouds

� Generator: New base-noises

� Extend to 4 layers and make a proper layer system (low priority
though)

22

Thank You!

Your purchase of Gimme Cloud Shadows enables me to continue devel-
oping code and techniques for game-development in an independent way!

23

	Workflows
	Dependencies and Setup
	Migration

	Basics
	Feature Comparison
	Material Controller

	Image-Effect Workflow
	Builtin
	URP
	HDRP

	Shadowcaster Workflow
	Material Workflow (Advanced)
	Talking Code

	Noise Texture Generator
	Sun Shafts
	Shader Stripping
	Additional Tools
	Shader Tools (Advanced)
	3D Texture Tools (Advanced)
	Make 3D Textures Seamless

	Useful Information
	Performance
	Memory
	Ideas

	Contact
	Future Plans
	Future
	Far Future

