
Precise Trajectories in Games

Mario Binder

October 15, 2023

1 Problem

When calculating the trajectory of a moving physical object in Unity or
other game engines, the most common way of achieving this is by numerical
simulation. The number of iterations depends then on the time of flight and
the abort condition. This looks, in code, more or less like so:

Vector3 cu r r en tPo s i t i on = th i s . t rans form . po s i t i o n ;
Vector3 cu r r en tVe l o c i t y = shootVe loc i ty ;

whi l e (cu r r en tPo s i t i on . y > ta rge tHe ight) {
cu r r en tVe l o c i t y += ac c e l e r a t i o n * Time . f ixedDeltaTime ;
cu r r en tVe l o c i t y *= (1 . 0 f = drag * Time . f ixedDeltaTime) ;
cu r r en tPo s i t i on += cur r en tVe l o c i t y * Time . f ixedDeltaTime ;

}

There are variations of this, but the things most implementations have
in common is the loop. The problem is that it is not clear when it will
terminate. If for example the object takes a minute to land on the ground,
then for ∆t = 0.02, we would have to iterate 60s

0.02s = 3000 times!

Of course, the obvious solution is to increase ∆t, however, the physics
engine will still calculate the velocity each frame, leading to imprecise results.

Another problem comes along, when the hit position has to be known
precisely (for example to place a target marker there). Now we do not only
iterate an unknown amount of times, but also while doing Raycasts!

2 Solution

So the ideal solution would have fewer iterations AND a fixed amount of
them. In other words, we want a closed formula for the object position at
time t... which means we have to do mathematics.

Disclaimer: I am not a mathematician! The formulae will work, but I
do not guarantee that they are already optimal. Also: The way in which I

1

found a solution might be pretty bad too. On the other hand, I might explain
things a little bit simpler (than they are). Use and improve everything at
your own discretion.

With that out of the way: Let’s get started!

2.1 Tangent

Along the trajectory, the velocity describes the tangent of the curve. It is
also the first derivative of the position formula we are searching for. The
idea is, that when we have a closed formula for the tangent, we only need
to integrate it.

First of all, I assume the engine uses linear drag, like in the code above,
acting on the total velocity of an object. If that is the case, then we can
write what is happening in each frame like so:

vn+1 = (vn + a∆t)(1− d∆t)

where v describes a velocity, a is a constant acceleration (usually gravity), d
is the linear drag coefficient (defined by the settings of the rigid body), ∆t
is a constant fixed time step, and n is the current frame number. Notably,
we have v0 as our start velocity at frame 0, which can be chosen freely.

Ok, what now? Well, we can try to expand this series and see if we can
spot a pattern. Here are some of the first terms:

v1 = (v0 + a∆t)(1− d∆t) = v0 + a∆t− v0d∆t− ad∆t2 (1)

v2 = (v1 + a∆t)(1− d∆t) = [(v0 + a∆t− v0d∆t− ad∆t2) + a∆t](1− d∆t)

= v0 + 2a∆t− 2v0d∆t− 3ad∆t2 + v0d
2∆t2 + ad2∆t3

(2)

v3 = (v2 + a∆t)(1− d∆t) = [(v0 + 2a∆t− ...) + a∆t](1− d∆t)

= v0 + 3a∆t− 3v0d∆t− 6ad∆t2 + 3v0d
2∆t2 + 4ad2∆t3 − v0d

3∆t3 − ad3∆t4

(3)

Ok, we have expanded it. Already looking complicated. But hold on,
let’s shuffle the terms a little bit, maybe we find some hints:

v1 = v0 − v0d∆t+ a∆t− ad∆t2 (4)

v2 = v0 − 2v0d∆t+ v0d
2∆t2 + 2a∆t− 3ad∆t2 + ad2∆t3 (5)

2

v3 = v0 − 3v0d∆t+ 3v0d
2∆t2 − v0d

3∆t3 + 3a∆t− 6ad∆t2 + 4ad2∆t3 − ad3∆t4

(6)

That looks a lot better already. First, notice that the velocity and ac-
celeration are independent (i.e. each addition and subtraction only contains
either v0 or a but not both). Which is absolutely fantastic! This means,
that if we can find a pattern, we can split it into two. One for how the
velocity changes with time and drag (”velocity over time”) and one for how
the acceleration changes the velocity with time and drag (”velocity change
over time”).

2.1.1 Velocity Over Time

Let’s start with Velocity Over Time vt. Let’s only consider the terms with
v0 now, and see how they change:

vt1 = v0 − v0d∆t
vt2 = v0 − 2v0d∆t+ v0d

2∆t2

vt3 = v0 − 3v0d∆t+ 3v0d
2∆t2 − v0d

3∆t3

From school, you should quite quickly spot that the multiplication factors
are the binomial coefficients. We can also see, that the + and − signs are
alternating. Additionally, the power of the d and ∆t in each term is simply
increasing by one. To make it short: We can write it as a sum!

vtn = v0

n∑
k=0

(
n

k

)
(−1)kdk∆tk (7)

Thinking about it... all we’re doing is some binomial expansion, the
same as (a + b)n. And we do alternate the signs when we have (a − b)n...
and asking a math solver (at least I admit it) confirms our suspicion, that
this can actually be simplified to:

vtn = v0(1− d∆t)n (8)

2.1.2 Velocity Change Over Time

It worked the first time, why wouldn’t it again? Here are the terms:
at1 = a∆t− ad∆t2

at2 = 2a∆t− 3ad∆t2 + ad2∆t3

at3 = 3a∆t− 6ad∆t2 + 4ad2∆t3 − ad3∆t4

Alright, there are still binomial coefficients, but they are more hidden.
That is because they do not start at

(
n
0

)
but at

(
n+1
1

)
. Additionally the first

3

term is missing 1a∆t. Well, all we have to do then is to add one to the
indices and then subtract the a∆t we have added too much:

atn = (a
n∑

k=0

(
n+ 1

k + 1

)
(−1)kdk∆tk+1)− a∆t (9)

A bit more complicated, but nothing a solver cannot handle:

atn =
a(d∆t(1− d∆t)n − (1− d∆t)n + 1)

d
− a∆t (10)

Hmm... ok, not really a nice formula, but still not too bad. And... we’re
actually done finding a closed formula for the tangent. All we have to do is
to add the two sums together:

vn = vtn + atn = v0(1− d∆t)n +
a(d∆t(1− d∆t)n − (1− d∆t)n + 1)

d
− a∆t

(11)
So what that means, is that we can calculate the tangent for each frame.

E.g. when an object is starting to move with v0 at frame 0, and we want
to know what velocity it has at frame 60, we simply set n = 60 and this
formula will give us the answer!

More than that, we also can get accurate velocities and tangents be-
tween frames, by considering n to be an element of R, i.e. a floating-point
number. How cool is that?

3 Position

Now to find out how far the object has travelled at time t, we simply integrate
the equation above (we = math solver). This gives us the area under the
curve, which is the distance travelled (+ a constant, which is our starting
position), like in classical mechanics.

However, first we should do the basics. Ok, so we want to integrate with
respect to frame time t. Now we define the domain. In this case, we do not
need and want the area under the curve for t < 0, so the integral should
be a definitive one from 0 to an arbitrary target time in frames rt (I had to
choose some letter...).

Then... wait... we do not have t anywhere in our equation? Well,
that is because we started with a series and frames, and are now going for
continuity. But all we have to do is to rename a few variables and cross our
fingers that it works out (Spoiler: It does).

I will rename n to t (we said that n ∈ R, so that shouldn’t be an issue).
Now t and ∆t is confusing, so we rename it to ∆f (which stands for frame
time).

Our equation now looks like this:

4

vt = v0(1− d∆f)t +
a(d∆f(1− d∆f)t − (1− d∆f)t + 1)

d
− a∆f (12)

Now just put on the integral:

pt =

∫ rt

0
(v0(1− d∆f)t +

a(d∆f(1− d∆f)t − (1− d∆f)t + 1)

d
− a∆f)dt

(13)

Do not confuse the dt at the end with d∗ t, dt just means we’re integrat-
ing with respect to time (and here I thought naming variables was only a
problem in programming).

Ok, so before we hand over control to a solver again, let us begin our-
selves. First off, we can integrate each term separately:

pt =

∫ rt

0
(v0(1− d∆f)t +

a(d∆f(1− d∆f)t − (1− d∆f)t + 1)

d
− a∆f)dt

=

∫ rt

0
(v0(1− d∆f)t)dt+

∫ rt

0
(
a(d∆f(1− d∆f)t − (1− d∆f)t + 1)

d
− a∆f)dt

(14)

After we have integrated each term we will get some constants c0 and c1.
However, those are not really meaningful by themselves as we can essentially
choose them freely without affecting the form of the position curve so to
speak. But they represent the start position p0 in our context, which is
how I will write it in the final pt-equation!

The first term integrated is:∫ rt

0
(v0(1− d∆f)t)dt = v0

∫ rt

0
(1− d∆f)tdt (15)

Now we use the fact that:
d
dxa

x = ln(a)ax

Which means (even when using the quotient rule):

d
dt

(1−d∆f)t

ln(1−d∆f) = (1− d∆f)t

Therefore:

v0

∫ rt

0
(1− d∆f)tdt = v0

(1− d∆f)rt − 1

ln(1− d∆f)
(16)

The -1 stems from the fact that we integrate from 0 (definite integral). Now
to the second one:

5

∫ rt

0
(
a(d∆f(1− d∆f)t − (1− d∆f)t + 1)

d
− a∆f)dt

= a

∫ rt

0
(
d∆f(1− d∆f)t − (1− d∆f)t + 1

d
−∆f)dt

=
a

d

∫ rt

0
(d∆f(1− d∆f)t − (1− d∆f)t + 1− d∆f)dt

=
a

d

∫ rt

0
((d∆f − 1)(1− d∆f)t − d∆f + 1)dt

(17)

Let us split it into parts:

∫ rt

0
1dt = rt + c∫ rt

0
d∆fdt = d∆frt + c∫ rt

0
((d∆f − 1)(1− d∆f)t)dt =

∫ rt

0
(1− d∆f)tdt

(18)

The last one we already know from the v0 part:

(d∆f − 1)

∫ rt

0
(1− d∆f)tdt = (d∆f − 1)

(1− d∆f)rt − 1

ln(1− d∆f)
+ c (19)

So combining the parts together we get:

a

d
[(d∆f − 1)

(1− d∆f)rt − 1

ln(1− d∆f)
− d∆frt + rt] (20)

Which can be simplified into:

a

d

(d∆f − 1)[(1− d∆f)rt − rtln(1− d∆f)− 1]

ln(1− d∆f)
(21)

So now we have both integrals. If we now do not forget to add the start
position... then we are done! Are you ready? Here is the final equation for
the position of an object affected by linear drag over time:

pt = p0+v0
(1− d∆f)rt − 1

ln(1− d∆f)
+
a

d

(d∆f − 1)[(1− d∆f)rt − rtln(1− d∆f)− 1]

ln(1− d∆f)
(22)

Heck yeah! What a beast! Because rt will be used as frames in our
methods in the code, I’ll just write it one more time replacing rt with f :

6

pt = p0+v0
(1− d∆f)f − 1

ln(1− d∆f)
+

a

d

(d∆f − 1)[(1− d∆f)f − fln(1− d∆f)− 1]

ln(1− d∆f)
(23)

Ok, so this will now give us the position of an object with a starting
velocity, affected by drag, at a frame f . If we want to use the usual time
t = f ∗∆f , we simply multiply each term (except the start position p0) with
∆f .

Now we have something we can work with... or can we? Because there
is one tiny problem with that formula... when d = 0 we divide by zero.
Luckily, this can be easily fixed by using Newton Physics in that case!

(This is how it looks like with our notation)

pt = p0 + v0t+
1

2
at2 (24)

The other time we have a problem is when d∆f = 1 (ln(0) is undefined).
The default value for ∆f in Unity is 1

50 , so the drag would have to be ≥ 50
before this problem occurs.

This is an example implementation of the equation in Unity (should be
adaptable to most engines that use linear drag):

pub l i c s t a t i c Vector3 GetPos i t ion (Vector3 s t a r tPo s i t i on , Vector3 s t a r tVe l o c i t y ,
f l o a t drag , f l o a t time)

{
Vector3 a c c e l e r a t i o n = Physics . g rav i ty ;
Vector3 po s i t i o n = s t a r tPo s i t i o n ;

i f (drag > 0 .0 f)
{

f l o a t frameDrag = 1 .0 f = drag * Time . f ixedDeltaTime ;
f l o a t frames = time / Time . f ixedDeltaTime ;

f l o a t frameDragLog = (f l o a t)Math . Log (frameDrag) ;
f l o a t frameDragPower = Mathf .Pow(frameDrag , frames) ;

p o s i t i o n += s t a r tVe l o c i t y * ((frameDragPower = 1 .0 f)
/ frameDragLog) * Time . f ixedDeltaTime ;

f l o a t accDragFactor = (drag * Time . f ixedDeltaTime = 1) ;
accDragFactor *= (frameDragPower = frames * frameDragLog = 1 .0 f) ;
accDragFactor /= (drag * frameDragLog) ;

p o s i t i o n += ac c e l e r a t i o n * accDragFactor * Time . f ixedDeltaTime ;

re turn po s i t i o n ;
}
e l s e
{

//Newton Phys ics
re turn po s i t i o n + s t a r tVe l o c i t y * time + 0.5 f * a c c e l e r a t i o n * time * time ;

}
}

4 Root-finding

Now that we have removed the annoying while-loop, what else can we do?
Turns out: A lot! We can, for example, figure out when an object is at a

7

certain height (Y-Value) a lot easier than before. Why? Because we can
travel back and forwards in time in any interval we like. And that means
we can use root-finding algorithms!

Why do we want to do this? So that instead of iterating an unknown
amount of times (possibly hundreds of steps), we only iterate a fixed amount
of time (and a lot less; the code below usually converges way before even
10 steps)! Additional bonus: It is incredibly precise (within reasonable time
frames).

One of the algorithms we can use to find a root is Newton’s Method.
But for that we would need the derivative... which we already have, because
we started with it. It’s the tangent, so yeah. There is however something
we have to be very careful about, and that is, that there may be two points
fitting a Y-Value. One for the way up, and one for the way down.

We usually only care about the points on the way down, so what we can
do, is to simply waste time until we fall. And we know when we fall, because
that is when the tangent is < 0 (if you want to search for a height on the
way up, the tangent has to be > 0).

Here the implementation:

pub l i c s t a t i c f l o a t GetTimeForReachingYOnTheWayDown(Vector3 s t a r tPo s i t i on ,
Vector3 s t a r tVe l o c i t y , f l o a t drag , f l o a t targetY ,
f l o a t startTime = 1.0 f , i n t i t e r a t i o n s = 16 , f l o a t ep s i l o n = 0.01 f)

{
f l o a t time = startTime ;
Vector3 tangent = GetTangent (s t a r tVe l o c i t y , drag , time) ;

f o r (i n t i = 0 ; i < i t e r a t i o n s ; i++)
{

//On the way up
i f (tangent . y >= 0.0 f)
{

time *= 2.0 f ;
tangent = GetTangent (s t a r tVe l o c i t y , drag , time) ;

}
e l s e
{

//Using Newton ’ s method
var po s i t i o n = GetPos i t ion (s t a r tPo s i t i on , s t a r tVe l o c i t y , drag , time) ;
tangent = GetTangent (s t a r tVe l o c i t y , drag , time) ;

i f (Mathf . Abs (po s i t i o n . y = targetY) < ep s i l o n) return time ;

time = time = ((p o s i t i o n . y = targetY) / tangent . y) ;
}

}

re turn time ;
}

The roots are at height = 0, therefore we subtract the target height from
the position. To spend time, I simply multiply it by 2 until the tangent is
negative (which it might be from the start if you shoot down). Note that
the algorithm converges faster if you can get a good estimate for the start
time (you could cache the time when the tangent becomes < 0 for example...
or you find the turning point analytically by setting the tangent equation
equal to 0).

As for calculating the tangent:

pub l i c s t a t i c Vector3 GetTangent (Vector3 s t a r tVe l o c i t y , f l o a t drag , f l o a t time)

8

{
i f (drag > 0 .0 f)
{

f l o a t frameDrag = 1 .0 f = drag * Time . f ixedDeltaTime ;
f l o a t frames = time / Time . f ixedDeltaTime ;

f l o a t frameDragPower = Mathf .Pow(frameDrag , frames) ;

Vector3 tangent = s t a r tVe l o c i t y * frameDragPower ;

Vector3 accTangent = (Phys ics . g rav i ty / drag) * (drag * Time . f ixedDeltaTime
* frameDragPower = frameDragPower + 1 .0 f) ;

accTangent == Physics . g rav i ty * Time . f ixedDeltaTime ;

re turn (tangent + accTangent) ;
}
e l s e
{

// Der r i va t i v e o f the c l a s s i c mechanics formula
return (s t a r tVe l o c i t y + Physics . g rav i ty * time) ;

}
}

5 Raycast Strategy

It is a sad fact of life, that the closer you get to something in the world,
the more flat it will appear. In a world full of polygons... well, you get the
point. But we can use this to our advantage as well.

Often times, the target height were the object will land is not known.
But minimizing the amount of Raycasts is important for the performance.
Now that we can skip time, there are some cool new algorithms we can try.
I assume a few things here: The acceleration is on the Y-Axis, the surface
is generally speaking on the XZ-Plane and there are no obstacles in the air.

Then, a simple strategy could be to cast Raycasts along the tangent (the
velocity vector) at a time t (when the tangent is < 0). If the position is pt,
then the origin of the cast should start quite some distance away from it in
the opposite direction to the tangent (so that something is hit, even if pt is
below the surface).

If we do not hit anything, we just double the time again. But otherwise,
just because we hit something with a Raycast does not mean it is the landing
height hl though, as the surface we hit, which could be very far away as well,
might lie higher or lower. But what we can reasonably assume is that when
we get very close to a surface, say < ϵ, that it is going to be flat. What we
also know, because the tangent is < 0, that the hit point of the cast is below
our current position (which we calculate from time t).

Therefore, we can take the hit point Y-Value as an initial approximate
guess for hl. We then use the root-finding algorithm from before to find a
new t-value. We then repeat this process, until the raycast hit point and
the current position are equal or within a small distance.

Note, that when the current position pt lies precisely on the target sur-
face, then the result of a raycast with the tangent as direction, will return
the same point pt (i.e. the algorithm will abort in that case and the point
is returned).

9

As you can see, we get very close to the actual hl with very few iterations.
Depending on the geometry of your world, this might reduce the amount of
raycasts for calculations like these quite drastically.

6 Disadvantages

Despite the obvious advantages, there are also a few problems with this way
of calculating trajectories, and you should be aware of them.

6.1 Precision

When the position you want to get is far ahead in the future, then the
number of frames can get quite high. Because the evaluation then contains
powers with large exponents, the results will get inaccurate. However, as
the velocity tends to 0 as well over large time spans, the same as the power
factor, the result remains stable at least.

By using double precision (very easy solution) we can delay that problem
quite long though.

6.2 Performance

While the formula is of course a lot faster than an iterative approach over
longer time periods, it might not be so at short ones. This is for one, because
the calculation done in the loop is cheap, but also because in contrast to a
root-finding algorithm, it can be vectorized. But really, it is not so much a
disadvantage as more like something we can optimize for.

10

If only there was a way to estimate or take an educated guess for the
number of iterations we have to take in that while-loop... well... that is
actually precisely what you can also do with the formula (by taking some
wild guesses at the time it is going to take when the object hits the ground
and checking, or by simply saving the result from some earlier points in
time)

Another situation, when the formula is not ideal, is when you want to
calculate points for the complete trajectory (for example to get all positions
as an input to a line renderer). In that case, the iterative approach is
certainly faster. However, still, with the equation, we might increase the
time step quite a bit without sacrificing precision. Additionally, with the
equation, we can compute points in parallel. So estimating what is faster is
not so easy, and requires experimentation.

11

	Problem
	Solution
	Tangent
	Velocity Over Time
	Velocity Change Over Time

	Position
	Root-finding
	Raycast Strategy
	Disadvantages
	Precision
	Performance

