
Manual

Contents

1 Dependencies and Setup 2
1.1 Migration . 2

2 Workflow 2
2.1 Material . 2
2.2 Profile . 3
2.3 Controller . 4
2.4 Providing Data to the Controller 4

3 Health Bar Controller 6
3.1 Inspector . 6

3.1.1 Draw Properties . 7
3.1.2 Profiles . 8
3.1.3 Animation / FlipBook 8
3.1.4 Culling . 8
3.1.5 Distance Behaviour . 9
3.1.6 Separator . 9
3.1.7 Transition Behaviour 9

3.2 Code . 10

4 Health Bar Data and Profile 11
4.1 Health Bar Profile . 11
4.2 Health Bar Data . 12

4.2.1 Data . 12
4.2.2 Methods . 12

5 Contact 13

6 Future Plans 13

1

1 Dependencies and Setup

In order for the package to work, the following dependencies need to be
installed either manually or via the package manager:

� Burst 1.8.7 or above

� Collections 2.1.4 or above

� Mathematics 1.2.6 or above (might work with lower versions; untested)

� Splines 2.2.1 or above (only for the demo scene)

1.1 Migration

Some custom editors use hard-coded paths for finding certain assets (e.g.
textures, compute shader etc.). This prevents moving the folder around in
the project. You can therefore find a tool called Migration Helper under
Window � Gimme � Instanced Healthbars � Migrate. Simply
select the directory you want the package to go into, and the tool will handle
the rest. Make sure to close Visual Studio or any other resource-blocking
programs before migrating.

2 Workflow

To render instanced healthbars we need four things:

� A material supporting GPU instancing

� TheHealthbarController as a component attached to some GameOb-
ject in the scene

� At least one Health Bar Profile (which you can find an entry in the
create menu)

� Some data for each instance you want to draw, sent via code to the
controller

2.1 Material

You can find two shaders in the asset package: HealthbarShader and
HealthbarDecorationShader. The controller expects a material created
from the first shader, which also holds all the logic for rendering a health
bar. The second shader is for decorating a health bar with an additional
mesh and only scales and fades in the same way as the first shader.

2

So the first step is to create a material from the HealthbarShader,
which has an interface that looks like this:

� Foreground: The foreground texture. This is the actual bar that will
go left and right

� Background: The background of a health bar. You can use alpha
cutout or transparency to create different shapes other than rectangles

� Separator: An optional texture, allowing you to separate blocks of
health from each other

� Transition: Another optional texture that is displayed before the
background, but behind the foreground, when health is lost during a
transition

2.2 Profile

You can create a profile anywhere in your project in the create-menu under
GimmeInstancedHealthbars/Profile. A profile contains data that is
used by multiple instances. You can later assign a profile to each instance
from your code and change them around as you desire.

Create a profile anywhere in your project. You should already be able
to see a simplified preview of the health bar.

ò
You can find a more detailed explanation of the profile in Health
Bar Data and Profile

3

2.3 Controller

You can either attach the HealthbarController-component to an existing
GameObject in your scene, or create it by dragging the BaseController-
prefab into your scene. You can find it in GimmeInstancedHealth-
Bars/Prefabs/BaseController.prefab.

After creating it, we need to assign the material and profile we created
before. So drag your material into the Healthbar Material-field under
Draw Properties

Next, we assign the profile under Profiles

Every controller needs at least one profile in order for it to work. This
is all we need to do to get the system to start working. The only thing
remaining to do is call methods from the controller in the script, to give it
the information on where to draw the health bar on the screen and with
how much health etc.

ò
You can find a more detailed explanation of the controller in
Health Bar Controller

2.4 Providing Data to the Controller

In essence, the only thing we need to do in the code is to create as many
instances of HealthbarData as we want to draw. Each health bar data
object should have assigned a transform (e.g. the hero), an offset (e.g. a few
meters above the head), a maximum health amount (e.g. 100), a current
health amount (e.g. 70) and a profile id (we only created one profile, so this
should be 0)

4

Here an example declaration:

HealthbarData healthbarData = new HealthbarData ()
{

attachedObject = hero . transform ,
currentHea l th = 70 .0 f ,
maxHealth = 100 .0 f ,
p r o f i l e ID = 0 ,
o f f s e t = Vector3 . up * 2 .0 f ,

} ;

After we created the object and stored it somewhere, we need to give
it to the controller that is referenced somewhere in the script, by calling
the method AddHealthbar(). But first, we need to initialize it (it is not
initialized automatically, in case you want to do it after loading the game
for example).

c o n t r o l l e r . I n i t () ;

c o n t r o l l e r . AddHealthbar (r e f healthbarData) ;

And that is basically it. You should now see a health bar floating above
the transform you provided to the data when starting the game. The reason
the method requires ref is because internally a HealthbarIdentifier is
assigned to the object. This is because of performance reasons to remove
healthbars faster from the controller again (RemoveAtSwapBack).

ò
If the explanation left something to explain to you, you can find
a working example in the sample scene on how the data creation
and controller methods work

5

3 Health Bar Controller

3.1 Inspector

Overview

� Initialize at Start(): Initialized the controller automatically upon
Start() (same as any other MonoBehaviour) instead of you doing it
via code

� Advanced Mode: Shows more advanced options in the inspector,
that are only useful under special circumstances

� Draw Properties: Controls how and how many instances of health
bars are drawn. This is also where you add and remove additional
features you might or might not want to use.

� Profiles: Holds data that is used for multiple instances for each health
bar. Each profile could represent a different type of enemy for example
(which is drawn differently then).

� Animation / FlipBook: You can use Flipbook-Textures for the
foreground or the background and control it here.

� Culling: Allows you to control the culling of the health bars

� Distance Behaviour: Controls the scale and alpha of all health bars
based on their distance to the camera that is currently rendering

� Separator: Allows you to fade in or out the separators with distance,
to prevent unreadable UI in some cases

� Transition Behaviour: Controls common behaviour of the transi-
tions (when health is lost or gained) for all healthbars

6

3.1.1 Draw Properties

� Max Capacity: Capacity with which the graphics buffers are initial-
ized internally. This is the maximum amount of healthbars you can
have simultaneously. If unsure how many you need, just set it to a
high number (default is 1023, which amounts to a single draw call)

� Draw Instanced: You can also draw the health bars without instanc-
ing. I would not know why, but the option is here nonetheless

� Draw Perspective: By default, the bars are drawn as if they were
UI elements. However, you can also draw them as if they were objects
in the world by enabling this option

� Health Bar Material: Material used for rendering the health bars.

� Render Layer: Can be used to render the bars into a different layer
(e.g. UI)

� Custom Mesh: Allows you to use a custom mesh, instead of a quad
that is generated in the controller otherwise. As long as the UVs map
correctly from 0 to 1, the health bar shader will work with any mesh
you provide, still drawing instanced.

� Decoration Mesh: You can render an additional mesh on top of the
health bar, using the health bar decoration shader. This allows you to
for example encase the bar in a glass casket among other things.

� Texture Samples: Internally, some small texture are generated to
be read again from in the shader. The higher this number, the more
accurate is the distance behaviour / gradient colors etc. but the more
memory the controller needs.

� Gradient Filter Mode: Sometimes you want to have smooth color
transitions, sometimes you want them to be unfiltered.

� Fade with Distance: Allows you to fade in or fade away a health
bar with a fade / transparent material

7

� Use Separators: If activated, uses the separator texture and the pro-
file information to render separators on top of the foreground texture

� Use Transition Texture: When enabled, the shader will display the
transition texture in the material when losing health

� Round Health To Blocks: Makes the health bar behave as if it
has integers as health. You can get a preview on the behaviour in the
profile

� Only Draw for Selected Cameras: You can tell the controller to
render the health bars only for certain cameras. Can be occasionally
useful for split screens or when doing some special rendering

3.1.2 Profiles

A list of Health Bar Profiles you can extend. You will need at least one
in order for the controller to work. Each health bar data object has a profile
ID assigned, which is just the order in this array. I.e. a health bar with
profile ID of 1, uses the second element in this array as a reference for the
profile information.

3.1.3 Animation / FlipBook

When enabling animations for either the foreground or the background,
the texture are treated as flip books. The tiling specifies how many pictures
are in each row or column. The speed is in frames per second.

3.1.4 Culling

By default, frustum culling is disabled for the health bars. This is because
the scaling in the shader makes it difficult to calculate the bounds accurately.

8

Another reason is that the performance gain is not very much in the first
place, as the system either culls all health bars or none. If you enable it, the
point positions of the health bars are taken to form a bounding box estimate
for. You can then expand this box by the Culling Box Expansion such
that culling is done correctly regardless of the scale of the health bars.

3.1.5 Distance Behaviour

The names of the fields should explain the behaviour. In principle, the
animation curves allow you to multiply the scale or the alpha of the health
bars based on the distance. The X-Axis of the animation curves repre-
sents the distance, while Y-Axis represents either the scale- or the alpha-
multiplier. If the distance is outside the specified keys, the value is equal
to the closest key. I.e. if the leftmost key is at X = 5 and Y = 1.2, then a
distance closer than 5m is still going to have a multiplier of 1.2.

3.1.6 Separator

This curve fades in or fades out the separators on top of the health bar
foreground (only if Use Separators is enabled in the draw properties).
This will only fade the separators, not the foreground or background.

Useful if there are reading problems from far away because of the amount
of separators.

3.1.7 Transition Behaviour

� Scale Transition: When activated, scales the transition texture after
the health transition, based on the transition background time defined
in the profile. Otherwise, the transition texture is just rendered with-
out moving.

9

� Alpha at Time: Adjusts the alpha value of the transition texture
based on time. This allows you to create one or multiple flashes when
losing health. If you do not want the transition texture to fade in or
out, set the keys to have values of 1.

3.2 Code

The most important methods of the controller are:

� Init(): Initializes the controller. Should be called from one of your
loading scripts. Upon initialization, all the necessary memory is cre-
ated for storing all the information necessary for the shader later upon
rendering.

� AddHealthbar(ref HealthbarData): Adds a health bar to the con-
troller, to be rendered the next frame

� RemoveHealthbar(HealthbarData): Removes a health bar again
from the controller. After the function is called, the health bar is not
rendered anymore (the next frame)

� UpdateHealthbar(HealthbarData): Updates the data in the con-
troller with the new data. This is necessary, because the data has to
be scheduled to be written to the GPU. Try to minimize the calls to
the function as much as possible. The writing process is done using a
job at the end of the frame.

Other methods which are likely less useful for the regular user:

� SetMaterialPropertyBlockProperties(): If you update properties
of the controller at runtime that should affect the material data, you
will have to call this function in order to see the effects

� SetMaterialKeywords(): If you want to change the draw behaviour
at runtime (i. e. you want to change the shader keywords) you would
need to call this method. However, note that you will need to handle
all the possible shader variants in your project yourself in order for
them to work in a build. That means you’ll have to always include
the shader in the project first with all its variants, and then strip the
unnecessary ones later again. You can find a tutorial about shader
variant stripping here: Shader Variant Stripping

� UpdateProfileData(): When you change profiles at runtime, make
sure to call this function later on, so the changes are reflected on the
GPU as well. This includes removing or adding them

10

https://youtu.be/ipDUSGlEHK8

4 Health Bar Data and Profile

4.1 Health Bar Profile

� Name: Profile Name

� Transition Time: If transitions are enabled, this specifies how long
they take (for the foreground texture). E.g. if the transition time is
set to one, and if an entity has 50 health and gains 20 health, the bar
will go from left to right and reach the point where 70 lies after one
second.

� Transition Background Time: If transitions are used and a tran-
sition texture as well, this time is used for scaling and fading it. The
total amount of time it takes for the transition is then the Transition
Time plus the Transition Background Time if health is lost, and
only the Transition Time otherwise.

� Percentage Gradient: Multiplies the foreground texture color by
the current health percentage.

The properties in the profile for the foreground and background texture
are the same:

� Tint: Additional Tint for the texture

� Tiling: Works in the same way as in a normal shader

� Scroll Speed: Allows you to scroll the texture coordinates / UVs
over time. Can be used instead of a flip book.

� Margins: Adjusting the margin allows you to align the textures prop-
erly if they are not by default. You can also do some fun effects at
runtime with them if you want

Back to the profile:

11

� Number of Separators: Only has an effect if separators are also
used in the controller. Defines the UV tiling of the separator texture
in essence.

� Number of Health Blocks: Only has an effect if Round Health to
Blocks is activated in the controller. This number basically represents
the number of ”blocks” the health bar has (i.e. the health bar acts
as if the value internally was an integer rather than a floating point
value)

� Scale: Scale of the health bar using this profile. Note that the scale
has to be adjusted quite significantly if you change between drawing
the health bars projected or like UI elements.

4.2 Health Bar Data

4.2.1 Data

� float currentHealth

� float maxHealth

� int profileID: The health bar will use the profile from the controller
with the same index as specified in this field

� Transform attachedObject: The object the health bar is attached
to. The render position is determined by the transform position and
the offset (next field)

� Vector3 offset: Offset that is added to the transform position

4.2.2 Methods

The data can override some profile values using the override methods. The
health bar will then use the values you provide instead. You can also clear
the overrides again. The following properties can be changed in that way:

� Foreground Tint: OverrideForegroundColor(Color) overrides
the profile foreground tint.

� Background Tint: OverrideBackgroundColor(Color) overrides
the profile background tint

� Scale: OverrideScale(Vector3) overrides the profile scale

There are also Clear-methods for the overrides. ClearOverrides()
clears all overrides previously made.

12

You can also create transitions. If you change the health without them,
the change is instant instead. There are two functions: CreateSimple-
Transition and CreateCustomTransition

CreateSimpleTransition creates a normal transition based on your
parameters in the profile and the controller. It will linearly interpolate
between a start and end health, calculating the required start and end times
internally.

CreateCustomTransition instead requires you to calculate these times
yourself. This can be used to create shorter or longer transitions, and also
allows you to interrupt running transitions in a better way.

ò
All methods in the health bar data require you to call the con-
troller update health bar method again, in order for them to have
any effect!

5 Contact

For any questions or suggestions, you can reach me anytime by the following
email-adress:

blenderfan@gmx.at

There is also a discord server, which is usually the fastest way to reach
me:

Parable Games - Discord

Alternatively, you can also find some social media links and contact in-
formation on my website:

https://parable-games.com

It is, for clarification, not required to credit my name when using my tools
and packages. However, it is very much appreciated if you do!

6 Future Plans

Some additional features I plan to implement in the near future:

� Text-Support somehow

� Shader Optimization

13

mailto:blenderfan@gmx.at
http://discord.gg/wGKEapzPPK
www.parable-games.com

Thank You!

Your purchase of Gimme Instanced Healthbars enables me to continue
developing code and techniques for game-development in an independent
way!

14

	Dependencies and Setup
	Migration

	Workflow
	Material
	Profile
	Controller
	Providing Data to the Controller

	Health Bar Controller
	Inspector
	Draw Properties
	Profiles
	Animation / FlipBook
	Culling
	Distance Behaviour
	Separator
	Transition Behaviour

	Code

	Health Bar Data and Profile
	Health Bar Profile
	Health Bar Data
	Data
	Methods

	Contact
	Future Plans

